
www.manaraa.com

This paper was previously titled \The CWC authenti
ated en
ryption (asso
iated data) mode."
High-speed en
ryption and authenti
ation:A patent-free solution for 10 Gbps network devi
esTadayoshi KohnoUC San Diego9500 Gilman Drive, MC 0114La Jolla, CA 92093tkohno�
s.u
sd.edu John ViegaVirginia Te
h6066 Leesburg Pike, Suite 500Falls Chur
h, VA 22041viega�se
uresoftware.
om Doug WhitingHifn, In
.5973 Avenida En
inas, Suite 110Carlsbad, CA 92009dwhiting�hifn.
omSeptember 1, 2003Abstra
tWe introdu
e CWC, the �rst patent-free and parallelizable dedi
ated blo
k
ipher mode ofoperation
apable of en
rypting and authenti
ating data at 10 Gbps in hardware using
on-ventional ASIC te
hnology. In addition to being designed for use with future 10 Gbps IPse
network devi
es, CWC was also designed to be eÆ
ient in software on modern CPUs. CWC isalso provably se
ure under the standard \authenti
ated en
ryption with asso
iated data" notionassuming that the underlying blo
k
ipher is a se
ure pseudorandom permutation, whi
h is areasonable assumption if the underlying blo
k
ipher is AES. All other \authenti
ated en
ryp-tion" blo
k
ipher modes are either patent-en
umbered (e.g., OCB) or are not parallelizableand therefore not
apable of pro
essing data beyond about 2 Gbps in hardware with a singlepro
essing unit (e.g., CCM and EAX). Although CWC requires more
hip area than OCB,our
al
ulations suggest that the extra sili
on
osts less than the intelle
tual property fees forthe patented modes. Furthermore, we remark that at least one standardization body (IEEE802.11) has reje
ted patented-en
umbered modes in favor of patent-free modes, suggesting thatthe demand for patent-free modes is very high.

www.manaraa.com

1 Introdu
tionThere has re
ently been a thrust toward produ
ing dedi
ated blo
k
ipher modes of operation
apable of simultaneously en
rypting and authenti
ating data. Su
h modes of operation are often
alled authenti
ated en
ryption (AE) modes or, if the modes are
apable of authenti
ating moredata than they en
rypt, authenti
ated en
ryption with asso
iated data (AEAD) modes. Despite theprevious work in this area, however, there remains at least one area of de�
ien
y: of the previously-existing modes, none of the patent-free ones are
apable of en
rypting and authenti
ating data fasterthan about 2 Gbps in hardware. Yet future high-speed IPse
 network devi
es will be expe
ted topro
ess data at a rate of 10 Gbps.We address this de�
ien
y in this paper by presenting a patent-free and parallelizable AEADmode of operation (CWC)
apable of en
rypting and authenti
ating data at 10 Gbps using
on-ventional ASIC te
hnology. We do not, however, sa
ri�
e performan
e in software. In fa
t, inaddition to requiring high-performan
e in hardware, high-performan
e in software was an expli
itdesign
riterion. We also required that our mode be provably-se
ure, under the standard AEADnotion [16℄, assuming that the underlying blo
k
ipher is a se
ure pseudorandom permutation,whi
h is a reasonable assumption if the underlying blo
k
ipher is AES. Our resulting
onstru
tionhas other desirable properties as well. For example, it is
lean and simple (in our opinion),
anpro
ess the data online (in the algorithmi
 sense), uses a single key (thereby avoiding expensivememory a

esses in hardware), and allows for pre-pro
essing of asso
iated data and other header�elds. Finding a patent-free solution that simultaneously satis�ed our hardware, software, andprovable-se
urity goals proved to be one of our main
hallenges; we believe that we have met that
hallenge.Let us
ontinue by elaborating on some of the motivations for CWC.Why do we want dedi
ated authenti
ated en
ryption modes? The traditional approa
hto a
hieving authenti
ated en
ryption is to
ombine some standard en
ryption mode (e.g., CBCmode) with some standard message authenti
ation s
heme (e.g., HMAC). This is known as thegeneri
-
omposition approa
h and was �rst formally explored in [1℄ and [10℄. Unfortunately, su
hgeneri
-
omposition
onstru
tions are often ad ho
 and, as illustrated in [1℄ and [10℄, it is veryeasy to a

identally
ombine se
ure en
ryption modes with se
ure MACs and still get inse
ureauthenti
ated en
ryption modes.One of the biggest advantages of dedi
ated AEADmodes over generi
-
omposition AEADmodesis that dedi
ated AEAD modes are not prone to su
h a

idental errors. That is, sin
e dedi
atedAEAD modes
learly spe
ify how to a
hieve both priva
y and authenti
ity, there is no longer therisk of someone a

identally
ombing a priva
y/en
ryption
omponent with an authenti
ity/MAC
omponent in an inse
ure fashion. Furthermore, sin
e most appli
ations that require priva
y alsorequire integrity, it is logi
al to fo
us on tools
apable of providing both servi
es simultaneously.There is thus great value in developing and standardizing dedi
ated AEAD modes, as eviden
edby a wealth of papers in this area [8, 5, 7, 17, 21, 16, 2℄.Patents. Pragmati
ally, patents are a major impediment to the standardization and wide-spreaddeployment of some of the modes presented in the above-mentioned papers. In parti
ular, threeindependent parties have applied for patents on single-pass authenti
ated en
ryption modes. It isnot our purpose to des
ribe the spe
i�
s of these patent appli
ations (and, indeed, the spe
i�
sare not
ompletely known to the publi
). Rather, we point out that the existen
e of these patentappli
ations makes many existing authenti
ated en
ryption modes less attra
tive, and thereforeless amenable to standardization and deployment. To exemplify this point, we note that althoughRogaway, Bellare, Bla
k, and Krovetz's OCB mode [17℄ is very eÆ
ient and elegant, it was appar-1

www.manaraa.com

ently reje
ted from the IEEE 802.11 wireless working group largely be
ause of the fa
t that it was
overed by patent appli
ations from multiple parties.What is needed? Noting the need for patent-free dedi
ated AEAD modes, Whiting, Ferguson,and Housley proposed a patent-free AEAD mode
alled CCM [21℄ whi
h, apparently be
ause ofits patent-free nature, has been adopted by the IEEE 802.11 working group. CCM was re
entlyfollowed by another
onstru
tion,
alled EAX, by Bellare, Rogaway, and Wagner [2℄. Sin
e CCMand EAX are based on the generi
-
omposition approa
h (they both essentially
ombine standard
ounter (CTR) mode en
ryption with variants of CBC-MAC message authenti
ation), CCM andEAX do not fall under the aforementioned patent appli
ations.There is, however, one signi�
ant disadvantage with both CCM and EAX: the CCM and EAXen
ryption and de
ryption operations are not parallelizable. That is, although the CTR modeportions of CCM and EAX are
learly parallelizable, their CBC-MAC portions are not. Paralleliz-ability is, however, very important. For example, without the ability to parallelize the en
ryptionpro
ess, using
urrent te
hnology it does not seem possible to build a single hardware engine forCCM or EAX
apable of en
rypting beyond approximately 2 Gbps.1 Although 2 Gbps might beadequate for today's appli
ations, su
h speeds will not be adequate for the
oming 10 Gbps networkdevi
es.Therefore, there is a need for a patent-free dedi
ated mode of operation
apable of en
ryptingand authenti
ating data at 10 Gbps in hardware. One major motivating example is future IPse
network devi
es, whi
h may soon have to pro
ess data at 10 Gbps.The CWC solution. We propose a general AEAD paradigm,
alled CWC, that addresses all theaforementioned issues. Our preferred instantiation of CWC for 128-bit blo
k
iphers is un-patented,provably-se
ure, parallelizable, and eÆ
ient in both hardware and software. The parallelizabilityenables high-speed hardware implementations to en
rypt at 10 Gbps when using AES.The general CWC paradigm is based on what is
alled the \En
rypt-then-Authenti
ate generi

omposition paradigm." In parti
ular, CWC essentially
ombines a Carter-Wegman message au-thenti
ation s
heme [20℄ with CTR mode en
ryption in an En
rypt-then-Authenti
ate manner.The general idea is as follows: given a pair of strings (A;M) and a non
e N as input, the CWCen
apsulation algorithm en
rypts M with CTR mode to get some intermediate
iphertext �. Itthen uses a Carter-Wegman MAC and the non
e N to MAC the pair (A; �). If we let � denote theresulting MAC tag, then the output of the CWC en
apsulation algorithm is the
on
atenation of� and � . CWC is designed to prote
t the priva
y of M and the integrity of both A and M . Wedefer the intri
a
ies of our spe
i�

onstru
tion to the body of this paper.Although based on the En
rypt-then-Authenti
ate generi

omposition paradigm, CWC is not ageneri

omposition
onstru
tion; for example, for eÆ
ien
y reasons the CWC en
ryption and MAC
omponents share the same blo
k
ipher key. This means, among other things, that we had to provethe se
urity of CWC dire
tly, rather than invoke previous results about the generi

ompositionparadigm. Additionally, be
ause of our performan
e goals, we developed a new, parallelizableCarter-Wegman MAC for use with our spe
i�
 CWC instantiation. We again stress that our designwas in
uen
ed by both our hardware and software goals and our provable-se
urity goals (as wellas our patent-free requirement). For example, we reje
ted designs that performed favorably insoftware but not in hardware, and we reje
ted designs that were slightly more eÆ
ient but thathad weaker provable-se
urity bounds than we desired.The CWC instantiation for 128-bit blo
k
iphers. Throughout the body of this paper1It is always possible to build two totally independent units and pro
ess two pa
kets at a time, but this isdramati
ally more
omplex, requiring twi
e the area, plus a load balan
er.2

www.manaraa.com

we will fo
us on our instantiation of the CWC paradigm for 128-bit blo
k
iphers.2 In parti
ular,we fo
us on CWC-AES, a CWC instantiation with AES as the underlying blo
k
ipher. When ourresults apply to AES with with spe
i�
 key lengths, we shall state so expli
itly. Instead of writingCWC-AES, we shall write CWC-BC or simply CWC when we mean the general CWC paradigminstantiated like CWC-AES but with any 128-bit blo
k
ipher BC in pla
e of AES.Note the di�eren
e in font between CWC, the general paradigm, and CWC, our spe
i�
 proposal.A
hieving parallelism. Clearly the CTR mode portion of CWC is parallelizable. Furthermore,the
ore of the Carter-Wegman MAC portion of CWC (a.k.a. the universal hashing portion ofCWC)
an be made parallelizable. In the
ase of CWC, the universal hashing step essentially worksby
omputing Y1xn + Y2xn�1 + Y3xn�2 + Y4xn�3 + � � �+ Ynx+ Yn+1 mod 2127 � 1 :where Y1; : : : ; Yn are 96-bit integers and Yn+1 is a 127-bit integer
orresponding to the pair (A; �)and x is an integer modulo the prime 2127 � 1. It is well-known that the
omputation of thispolynomial is parallelizable. For example, if we have two engines available, we
an rewrite theabove polynomial as�Y1ym + Y3ym�1 + � � �+ Yn�x+ �Y2ym + Y4ym�1 + � � �+ Yn+1� mod 2127 � 1 ;where y = x2 mod 2127 � 1, m = (n� 1)=2, and we assume for illustrative purposes that n is odd.We
an then
ompute both the left and the right portions of the above in parallel. Additionalparallelism
an be a
hieved by further splitting the original polynomial into j polynomials in y0 =xj mod 2127 � 1.Performan
e. Let (A;M) be some input to the CWC en
apsulation algorithm (re
all that A is theasso
iated data and M is the message to en
rypt). Assuming that the universal hashing subkey ismaintained a
ross invo
ations, en
apsulating (A;M) takes djM j=128e+2 blo
k
ipher invo
ations.The polynomial used in CWC's universal hashing step will have degree d = djAj=96e + djM j=96e.There are several ways to evaluate this polynomial (details in Se
tion 4). As noted above, we
ouldevaluate it in parallel. Serially, assuming no pre
omputation, we
ould evaluate this polynomialusing d 127x127-bit multiplies. As another example, assuming n pre
omputed powers of the hashsubkey, whi
h are
heap to maintain in software for reasonable n, we
ould evaluate the polynomialusing d�m 96x127-bit multiplies and m 127x127-bit multiplies, where m = d(d+ 1)=ne � 1.As noted before, it is possible to implement CWC-AES in hardware at 10 Gbps using
onventionalASIC te
hnology. Spe
i�
ally, at 0.13 mi
ron, it takes approximately 300 Kgates to rea
h 10 Gbpsthroughput. Table 1 relates the software performan
e, on a Pentium III, of CWC-AES to the twoother patent-free AEAD modes CCM and EAX. The implementations used to
ompute Table 1were written in C by Brian Gladman [4℄ and all use 128-bit AES keys; the
urrent CWC-AESimplementation does not use the above-mentioned pre
omputation approa
h for evaluating thepolynomial. Table 1 shows that the
urrent implementations of the three modes have
omparableperforman
e in software, the relative \best" depending on the OS/
ompiler and the length of themessage. Using the above-mentioned pre
omputation approa
h and swit
hing to assembly, weanti
ipate redu
ing the
ost of CWC's universal hashing step to around 8
pb, thereby signi�
antlyimproving the performan
e of CWC-AES in software
ompared to CCM-AES and EAX-AES (sin
ethe authenti
ation portions of CCM-AES and EAX-AES are limited by the speed of AES). For
omparison, Bernstein's related hash127, whi
h also evaluates a polynomial modulo 2127 � 1 but2If desired, it is possible to instantiate the general CWC paradigm with 64-bit blo
k
iphers, although
ertainlimitations (e.g., non
e size) apply to su
h variants. We do not present a 64-bit CWC variant here sin
e we areprimarily
on
erned with new, high-speed systems using AES, not lega
y appli
ations.3

www.manaraa.com

Linux/g

-3.2.2 Windows 2000/Visual Studio 6.0Payload message lengths (bytes) Payload message lengths (bytes)Mode 128 256 512 2048 8192 128 256 512 2048 8192CWC-AES 105.5 88.4 78.9 72.2 70.5 84.7 70.2 62.2 56.5 55.0CCM-AES 97.9 87.1 82.0 78.0 77.1 64.8 56.7 52.5 49.5 48.7EAX-AES 114.1 94.9 86.1 79.1 77.5 75.2 61.8 55.3 50.4 49.1Table 1: Software performan
e (in
lo
ks per byte) for the three patent-free dedi
ated AEAD modeson a Pentium III. All implementations were in C and written by Brian Gladman [4℄ and use 128-bitAES keys. Values are averaged over 50 000 samples. Please see the text for additional informationand dis
ussion.whose spe
i�
 stru
ture makes it less attra
tive in hardware, runs around 4
pb on a Pentium IIIwhen written in assembly and using the pre
omputation approa
h.We do not
laim that CWC-AES will be parti
ularly eÆ
ient on low-end CPUs su
h as 8-bitsmart
ards. However, our goal was not to develop an eÆ
ient AEAD mode for su
h low-endpro
essors. Rather, our goal was to develop a parallelizable and eÆ
ient AEAD mode for 10 Gbpshardware and for modern CPUs.1.1 Ba
kground and related workThe notion of an authenti
ated en
ryption (AE) mode was formalized by Katz and Yung [8℄ andby Bellare and Namprempre [1℄ and the notion of an authenti
ated en
ryption with asso
iated data(AEAD) mode was formalized by Rogaway [16℄. In [1, 10℄, Bellare{Namprempre and Kraw
zykexplored ways to
ombine standard en
ryption modes with MACs to a
hieve authenti
ated en-
ryption. A number of dedi
ated AE and AEAD modes also exist, in
luding RPC [8℄, XCBC [5℄,IACBC [7℄, OCB [17℄, CCM [21℄, and EAX [2℄. Within the s
ope of dedi
ated blo
k
ipher-basedAEAD modes, CWC's
losest relatives are CCM and EAX, whi
h also use two passes and are un-patented. From a broader perspe
tive, CWC is similar to the
ombination of M
Grew's UST [14℄and TMMH [13℄, where one of the main advantages of CWC over UST+TMMH is CWC's small keysize, whi
h
an be a bottlene
k for UST+TMMH in hardware at high speeds.Rogaway and Wagner re
ently released a
ritique of CCM [18℄. For ea
h issue raised in [18℄, we�nd that we have already addressed the issue (e.g., we designed CWC to be on-line) or we disagreewith the issue (e.g., we feel that it is suÆ
ient for new modes of operation to handle arbitraryo
tet-length, as opposed to arbitrary bit-length, messages3).The integrity portion of CWC builds on top of the Carter-Wegman universal hashing approa
h tomessage authenti
ation [20℄. Like Bernstein's hash127 [3℄, CWC's universal hash fun
tion evaluatesa polynomial over the integers modulo the prime 2127 � 1. One of the main di�eren
e betweenhash127 and CWC's universal hash fun
tion is that hash127 uses signed 32-bit
oeÆ
ients andCWC uses unsigned 96-bit
oeÆ
ients. See Remark 3.2 and Se
tion 4 for dis
ussions on why we
hose to use 96-bit
oeÆ
ients.In April 2003 we introdu
ed an Internet-Draft, within the IRTF Crypto Forum Resear
h Group,spe
ifying the CWC-AES mode of operation. The latest version of the Internet-Draft
an be foundat http://www.zork.org/
w
 or on the IETF website http://www.ietf.org.3Although we stress that, if desired, it is easy to modify CWC to handle arbitrary bit-length messages. SeeRemark 3.9. 4

www.manaraa.com

1.2 OutlineWe begin in Se
tion 2 with some preliminaries and then des
ribe the CWC mode of operation inSe
tion 3. In Se
tion 4 we dis
uss the performan
e of CWC and in Se
tion 5 we present our provable-se
urity results for CWC. Appendix A
ontains our intelle
tual property statement. Appendix Bpresents a summary of CWC's properties. Appendix C
ontains the formal proofs of se
urity forCWC, as well as a des
ription of our general CWC paradigm. Appendix D
ontains test ve
tors.2 PreliminariesNotation. If x is a string then jxj denotes its length in bits (not o
tets). Let " denote the emptystring. If x and y are two equal-length strings, then x�y denotes the xor of x and y. If x and y arestrings, then xky denotes their
on
atenation. If N is a non-negative integer and l is an integer su
hthat 0 � N < 2l, then tostr(N; l) denotes the en
oding of N as an l-bit string in big-endian format.If x is a string, then toint(x) denotes the integer
orresponding to string x in big-endian format (themost signi�
ant bit is not interpreted as a sign bit). For example, toint(10000010) = 27 + 2 = 130.Let x y denote the assignment of y to x. If X is a set, let x $ X denote the pro
ess of uniformlysele
ting at random an element from X and assigning it to x. If f is a randomized algorithm, letx $ f(y) denote the pro
ess of running f with input y and a uniformly sele
ted random tape.When we refer to the time of an algorithm or experiment in the provable se
urity se
tion of thispaper, we in
lude the size of the
ode (in some �xed en
oding). There is also an impli
it big-Osurrounding all su
h time referen
es.Authenti
ated en
ryption modes with asso
iated data. We use Rogaway's notion ofan authenti
ated en
ryption with asso
iated data (AEAD) mode [16℄. An AEAD mode SE =(Ke; E ;D)
onsists of three algorithms and is de�ned over some key spa
e KeySpSE , some non
e spa
eNon
eSpSE = f0; 1gn, n a positive integer, some asso
iated data (header) spa
e AdSpSE � f0; 1g�,and some payload message spa
e MsgSpSE � f0; 1g�. We require that membership in MsgSpSE andAdSpSE
an be eÆ
iently tested and that if M;M 0 are two strings su
h that M 2 MsgSpSE andjM 0j = jM j, then M 0 2 MsgSpSE .The randomized key generation algorithm Ke returns a key K 2 KeySpSE ; we denote thispro
ess as K $ Ke. The deterministi
 en
ryption algorithm E takes as input a key K 2 KeySpSE ,a non
e N 2 Non
eSpSE , a header (or asso
iated data) A 2 AdSpSE , and a payload messageM 2 MsgSpSE , and returns a
iphertext C 2 f0; 1g�; we denote this pro
ess as C EN;AK (M) orC EK(N;A;M). The deterministi
 de
ryption algorithm D takes as input a key K 2 KeySpSE ,a non
e N 2 Non
eSpSE , a header A 2 AdSpSE , and a string C 2 f0; 1g� and outputs a messageM 2 MsgSpSE or the spe
ial symbol INVALID on error; we denote this pro
ess as M DN;AK (C).We require that DN;AK (EN;AK (M)) = M for all K 2 KeySpSE , N 2 Non
eSpSE , A 2 AdSpSE , andM 2 MsgSpSE . Let l(�) denote the length fun
tion of SE ; i.e., for all keys K, non
es N , headers A,and messages M , jEN;AK (M)j = l(jM j).Under the
orre
t usage of an AEAD mode, after a random key is sele
ted, the appli
ationshould never invoke the en
ryption algorithm twi
e with the same non
e value until a new key israndomly sele
ted. In order to ensure that a non
e does not repeat, implementations typi
ally usenon
es that
ontain
ounters. We use the notion of a non
e, rather than simply a
ounter, be
ausethe notion of a non
e is more general and allows the developer the freedom to stru
ture the non
eas he or she desires.Blo
k
iphers. A blo
k
ipher E : f0; 1gk � f0; 1gL ! f0; 1gL is a fun
tion from k-bit keys andL-bit blo
ks to L-bit blo
ks. We use EK(�), K 2 f0; 1gk, to denote the fun
tion E(K; �) and we5

www.manaraa.com

use f $ E as short hand for K $ f0; 1gk ; f EK . Blo
k
iphers are families of permutations;namely, for ea
h key K 2 f0; 1gk, EK is a permutation on f0; 1gL. We
all k the key length of Eand we
all L the blo
k length.3 The CWC mode of operationWe now des
ribe the CWC mode of operation for 128-bit blo
k
iphers. See Appendix C for ades
ription of the general CWC
onstru
tion.If BC denotes a blo
k
ipher with 128-bit blo
ks and kl-bit keys, and if tl � 128 is the desiredtag length for CWC in bits, then let CWC-BC-tl denote the CWC mode of operation instantiatedwith BC using tag length tl. Throughout the remainder of this se
tion, �x BC and tl and letCWC-BC-tl = (K;CWC-ENC;CWC-DEC).We asso
iate to CWC-BC-tl the following sets:MsgSpCWC-BC-tl = f x 2 (f0; 1g8)� : jxj � MaxMsgLen gAdSpCWC-BC-tl = f x 2 (f0; 1g8)� : jxj � MaxAdLen gKeySpCWC-BC-tl = f0; 1gklNon
eSpCWC-BC-tl = f0; 1g88where MaxMsgLen and MaxAdLen are both 128 � (232�1). That is, the payload and asso
iated dataspa
es for CWC-BC-tl
onsist of all strings of o
tets that are at most 232 � 1 blo
ks long.3.1 The CWC
oreThe key generation algorithm K returns a randomly sele
ted key from KeySpCWC-BC-tl (i.e., the keygeneration returns a random kl-bit string). The en
ryption algorithm CWC-ENC works as follows:Algorithm CWC-ENCK(N;A;M) // CWC en
ryption� CWC-CTRK(N;M)� CWC-MACK(N;A; �)Return �k�where CWC-CTR and CWC-MAC are des
ribed in Se
tion 3.2. The de
ryption algorithm CWC-DECworks as follows:Algorithm CWC-DECK(N;A;C) // CWC de
ryptionIf jCj < tl then return INVALIDParse C as �k� where j� j = tlIf A 62 AdSpCWC-BC-tl or � 62 MsgSpCWC-BC-tl then return INVALIDIf � 6= CWC-MACK(N;A; �) then return INVALIDReturn CWC-CTRK(N;�)3.2 The CWC subroutinesThe remaining CWC algorithms are de�ned as follows:Algorithm CWC-CTRK(N;M) // CWC
ounter mode module� djM j=128eFor i = 1 to � do 6

www.manaraa.com

ksi BCK(107kNktostr(i; 32)) // Note that 107 means a one bit followed by 7 zeros� (�rst jM j bits of ks1kks2k � � � kks�)�MReturn �Algorithm CWC-MACK(N;A; �) // CWC authenti
ation moduleR BCK(CWC-HASHK(A; �))� BCK(107kNk032)�RReturn �rst tl bits of �Algorithm CWC-HASHK(A; �) // CWC universal hashing moduleZ last 127 bits of BCK(110126)Kh toint(Z) // The same Kh value is used in every invo
ation of CWC-HASHK .l minimum integer su
h that 96 divides Ak0ll0 minimum integer su
h that 96 divides �k0l0X Ak0lk�k0l0 ; � jXj=96 ; l� j�j=8 ; lA jAj=8Break X into
hunks X1;X2; : : : ;X� // jX1j = jX2j = � � � = jX� j = 96For i = 1 to � doYi toint(Xi)Y�+1 264 � lA + l� // In
lude the lengths of A and � in the polynomial.R Y1K�h + � � �+ Y�Kh + Y�+1 mod 2127 � 1Return tostr(R; 128) // Note: �rst bit of result will always be 03.3 RemarksWe now highlight some features of CWC, explain some of our design de
isions, and dis
uss some ofthe alternatives we explored. We have additional remarks in Se
tion 5.4.Remark 3.1 [Computing the CWC-HASH polynomial.℄ The polynomialY1K�h + � � �+ Y�Kh + Y�+1 mod 2127 � 1in CWC-HASH
an be
omputed using Horner's Rule as((((Y1)Kh + Y2)Kh + � � �)Kh + Y�)Kh + Y�+1 mod 2127 � 1 :Alternatively, if the values Kih are pre
omputed, the polynomial
an be
omputed dire
tly.Furthermore, as dis
ussed in the introdu
tion,
omputation of the polynomial in CWC-HASH
an be parallelized by splitting the polynomial into multiple polynomials in Kih for some i.As we will see in Se
tion 4, di�erent implementations will want to evaluate the polynomial indi�erent ways. For example, in software it is advantageous to pre
ompute the powers of the Kh andevaluate the polynomial dire
tly. To avoid unne
essary memory a

esses, hardware implementationswill likely evaluate the polynomial using Horner's rule (perhaps by �rst splitting the polynomial inorder to exploit CWC-HASH's parallelism).Remark 3.2 [On the size of the CWC-HASH
oeÆ
ients.℄ All the
oeÆ
ients Y1; : : : ; Y�in CWC-HASH are 96-bit integers. When evaluating the polynomial using pre
omputed powersof Kh, the
ost for ea
h
oeÆ
ient in
ludes the
ost of a 96x127-bit multiply. When evaluatingthe polynomial using Horner's rule, the
ost for ea
h
oeÆ
ient in
ludes the
ost of a 127x127-bitmultiply (sin
e the a

umulated value will be 127 bits long). (See Remark 5.4 for why we
hosenot to use 96-bit hash subkeys and, parti
ularly relevant here, the fa
t that when we split thepolynomial and evaluate two polynomials in Kih, i � 2, Kih will likely be 127 bits long even if Kh is7

www.manaraa.com

96 bits). Sin
e we are are already performing 127x127-bit multiplies, to in
rease the performan
ewhen using Horner's rule it would easily be possible to de�ne CWC to use
oeÆ
ients up to 126-bitsin size. Su
h an approa
h would speed up the Horner's rule
omputation by a ratio of 126/96(nearly 4:3), but would require
onsiderable additional
omplexity to perform bit and byte shiftingwithin the
oeÆ
ients. Note that Bernstein's related hash127 [3℄ uses smaller 32-bit
oeÆ
ients,whi
h makes it more
ostly in hardware when evaluating the polynomial using Horner's rule, but
heaper in software when using pre
omputed powers of the hash subkey. We use 96-bit
oeÆ
ientsbe
ause it provides for fast hardware implementations (using Horner's rule) and fast (althoughnot as fast as hash127) software implementation when using pre
omputation. See Se
tion 4 foradditional dis
ussion. (Finally, the �nal Y�+1 may be larger than 96-bits sin
e Y�+1 does not haveto be multiplied with anything.)Remark 3.3 [Why a single key.℄ It would be perfe
tly a

eptable from a se
urity perspe
tive tomake the blo
k
ipher key K and hash key Kh independent. The main motivation for using a singlekey, and deriving the hash key Kh from the blo
k
ipher key K, was simpli
ity of key management.From a performan
e perspe
tive, we note that fet
hing key material
an be a bottlene
k in high-speed hardware.Remark 3.4 [Separating blo
k
ipher inputs.℄ The input to the blo
k
ipher when generatingthe hash key Kh begins with the bits 11. All the inputs when generating CTR mode keystreambegin with the bits 10. The input to the keystream generator in CWC-MAC has the last 32 bits allzero and the input to the blo
k
ipher in CWC-CTR never has the last 32 bits zero. All the outputsof CWC-HASH begin with a 0 bit. These properties ensure that there is never an overlap in theinputs between the di�erent uses of the underlying blo
k
ipher. For example, the output of theuniversal hash fun
tion (whi
h is en
iphered with the blo
k
ipher) will never
ollide with one ofthe inputs to the blo
k
ipher in CWC-CTR. Essentially, separating the blo
k
ipher inputs in thisway is what allows us to use a single blo
k
ipher key in all appli
ations of the blo
k
ipher.Remark 3.5 [Why not derive multiple keys from a single key?℄ It would be possibleto de�ne a mode of operation that takes a single master key and that derives \independent"en
ryption and MAC blo
k
ipher keys from the master key. Doing so would eliminate the need tobe
areful about separating inputs to the blo
k
ipher (Remark 3.4), but would require additional
omputations (most likely blo
k
ipher invo
ations) to derive the en
ryption and MAC keys ifimplementations only store the master in memory. Furthermore, unless implementations store theexpanded keys in memory, there would be the additional
ost of expanding the key s
hedules forthe derived en
ryption and MAC keys. Sin
e we
an provably use the same blo
k
ipher key for allappli
ations of the underlying blo
k
ipher (Remark 3.4 and Se
tion 5), sin
e our solution avoidsunne
essary pre
omputation steps, and sin
e we believe our solution is still
lean and simple, we
hose not to derive \independent" en
ryption and MAC blo
k
ipher keys from a single master key.Remark 3.6 [Computing the universal hash subkey.℄ Although CWC-HASH shows the hashsubkeyKh being
omputed upon every invo
ation, it is possible to
omputeKh in the key generationstep of CWC. Doing so would save one blo
k
ipher appli
ation per message but would requiremaintaining an additional 128 bits a
ross invo
ations. We anti
ipate that in hardware, wherefet
hing key material
an be expensive, the hash subkey will be re-
omputed on every invo
ationof the en
ryption and de
ryption algorithms. In software, however, we anti
ipate that the subkeyKh will be
omputed on
e and maintained a
ross invo
ations.8

www.manaraa.com

Remark 3.7 [On the
hoi
e of parameters.℄ The parameters (e.g., the non
e length and theway the non
e is en
oded in the input to the blo
k
ipher) are �xed for CWC. This is in order topromote interoperability. In CWC the blo
k
ounter length is set to 32 bits in order to allow CWCto be used with IPse
 jumbograms and other large pa
kets up to 232 � 1 blo
ks long. The non
elength is set to 88 bits in order to handle future IPse
 sequen
e numbers.Remark 3.8 [Byte ordering.℄ CWC uses big-endian byte ordering. We do so for
onsisten
ypurposes and in order to maintain
ompatibility with M
Grew's ICM Internet-Draft [12℄ and theIETF, whi
h strongly favors the big-endian byte-ordering.Remark 3.9 [Handling arbitrary bit-length messages.℄ Although we
ould have spe
i�edCWC to take arbitrary bit-length messages as input (just
hange the de�nitions of the messagespa
es and
ompute lA jAj and l� j�j in CWC-HASH), we do not spe
ify CWC this way simplybe
ause there does not appear to be a signi�
ant need to handle arbitrary bit-length messages andwe do not
onsider it a good trade-o� to de�ne a mode for arbitrary bit-length messages at theexpense of o
tet-oriented systems.If, in the future, su
h a need arises, it will still be possible to modify the
urrent CWC
onstru
-tion to take arbitrary bit-length messages as input without a�e
ting interoperability with existingCWC implementations when o
tet-strings are
ommuni
ated. Although other possibilities exist,one method would be to augment the
omputation of Y�+1 in CWC-HASH as follows:rA jAj mod 8 ; r� j�j mod 8 ; Y�+1 2120 � rA + 2112 � r� + 264 � lA + l� :Remark 3.10 [64-bit blo
k
iphers.℄ It is possible to instantiate the general CWC paradigm(Appendix C) with 64-bit blo
k
iphers like DES and 3DES. We do not do so in this paper sin
ewe are targeting future high-speed
ryptographi
 appli
ations.Remark 3.11 [Initial
ounter for CTR-mode.℄ Motivated by EAX2 [2℄, one possible alter-native to CWC might be to use BCK(11105kN) both as the value to en
rypt R in CWC-MAC andas the initial
ounter to CTR mode-en
rypt M (with the �rst two bits of the
ounter always setto 10). Other EAX2-motivated
onstru
tions also exist. For example, the tag might be set toBCK(h(X0kN))�BCK(h(X1kA))�BCK(h(X2k�)), where X0;X1;X2 are strings, none of whi
h isa pre�x of the other, and h is a parallelizable universal hash fun
tion, like CWC-HASH but hashingonly single strings (as opposed to pairs of strings). Compared to CWC, these alternatives have theability to take longer non
es as input, and, from a fun
tional perspe
tive,
an be applied to stringsup to 2126 blo
ks long. But we do not view this as a reason to prefer these alternatives over CWC.From a pra
ti
al perspe
tive, we do not foresee appli
ations needing non
es longer than 11 o
tets,or needing to en
rypt messages longer than 232 � 1 blo
ks. Moreover, from a se
urity perspe
tive,appli
ations should not en
rypt too many pa
kets between rekeyings, implying that even 11 o
tetnon
es are more than suÆ
ient.4 Performan
e4.1 HardwareSin
e one of our main goals is to a
hieve 10 Gbps in hardware, and in parti
ular for future high-speed IPse
 network devi
es, let us fo
us �rst on hardware
osts. As noted in the introdu
tion, using0.13 mi
ron CMOS ASIC te
hnology, it should take approximately 300 Kgates to a
hieve 10 Gbpsthroughput for CWC-AES. This estimate, whi
h is appli
able to AES with all key lengths, in
ludes9

www.manaraa.com

four AES
ounter-mode en
ryption engines, ea
h running at 200 MHz and requiring about 25Kgatesea
h. In addition, there are two 32x128-bit multiply/a

umulate engines, ea
h running at 200 MHzwith a laten
y of four
lo
ks, one ea
h for the even and odd polynomial
oeÆ
ients. Of
ourse,simply keeping these engines \fed" may be quite a feat in itself, but that is generally true of any 10Gbps path. Also, there may well be better methods to stru
ture an implementation, depending onthe parti
ular ASIC vendor library and te
hnology, but, regardless of the implementation strategy,10 Gbps is quite a
hievable be
ause of the inherent parallelism of CWC.Sin
e OCB is CWC's main
ompetitor for high-speed environments, it is worth
omparing CWCwith OCB instantiated with AES (we do not
ompare CWC with CCM and EAX here sin
e thelatter two are not parallelizable). We �rst note that CWC-AES saves some gates be
ause we onlyhave to implement AES en
ryption in hardware. However, at 10 Gbps, OCB still probably requiresonly about half the sili
on area of CWC-AES. The main question for many hardware designers isthus whether the extra sili
on area for CWC-AES
osts more than three royalty payments, as well asnegotiation
osts and overhead. Our estimates indi
ate that, given today's sili
on
osts, the extrasili
on for CWC-AES is probably
heaper than the IP fees for OCB.4.2 SoftwareCWC-AES
an also be implemented eÆ
iently in software. Table 1 shows timing information forCWC-AES, as well as CCM-AES and EAX-AES, on a 1.133GHz mobile Pentium III dual-bootingRedHat Linux 9 (kernel 2.4.20-8) and Windows 2000 SP2. The numbers in the table are the
lo
ksper byte for di�erent message lengths averaged over 50 000 runs and in
lude the entire time forsetting up (e.g., expanding the AES key-s
hedule) and en
rypting. All implementations were in Cand written by Brian Gladman [4℄ and use 128-bit AES keys. The Linux
ompiler was g

 version3.2.2; the Windows
ompiler was Visual Studio 6.0.From Table 1 we
on
lude that the three patent-free modes, as
urrently implemented by Glad-man, share similar software performan
es. The \best" performing one appears to depend onOS/
ompiler and the length of the message being pro
essed. On Linux, it appears that CWC-AESperforms slightly better than EAX-AES for all message lengths that we tested, and better thanCCM-AES for the longer messages, whereas Gladman's CCM-AES and EAX-AES implementationsslightly outperform his CWC-AES implementation on Windows for all the message lengths that wetested.Note, however, that all the implementations used to
ompute Table 1 were written in C. Fur-thermore, the
urrent CWC-AES
ode does not make use of all of the optimization te
hniques (andin parti
ular pre
omputation) that we des
ribe below. By swit
hing to assembly and using theadditional optimization te
hniques, we anti
ipate the speed for CWC-HASH to drop to better than8
lo
ks per byte, whereas the speed for the CBC-MAC portion of CCM-AES and EAX-AES willbe limited by the speed of AES (the best reported speed for AES on a Pentium III is 14.1
pb,due to a proprietary library by Helger Lipmaa; Gladman's free hand-optimized Windows assemblyimplementation runs at 17.5
pb [11℄). Returning to the speed of CWC-HASH, for referen
e wenote that Bernstein's related hash127 [3℄ runs around 4
pb on a Pentium III when written inassembly and using the pre
omputation approa
h. Bernstein's hash127 also works by evaluatinga polynomial modulo 2127 � 1; the main di�eren
e is that the
oeÆ
ients for hash127 are 32 bitslong, whereas the
oeÆ
ients for CWC-HASH are 96 bits long (re
all Remark 3.2, whi
h dis
usseswhy we use 96-bit
oeÆ
ients).
10

www.manaraa.com

4.2.1 Implementing CWC-HASH in softwareSin
e the implementation of CWC-HASH is more
ompli
ated than the implementation of theCWC-CTR portion of CWC, we devote the rest of this se
tion to dis
ussing CWC-HASH.Pre
omputation. As noted in Remark 3.1, there are two general approa
hes to implementingCWC-HASH in software. The �rst is to use Horner's rule. The se
ond is to evaluate the polynomialdire
tly, whi
h
an be faster if one pre
omputes powers of the hash key Kh at setup time (here thepowers of Kh
an be viewed as an expanded key-s
hedule). In parti
ular, as noted in Remark 3.2,evaluating the polynomial using Horner's rule requires a 127x127-bit multiply for ea
h
oeÆ
ient,whereas evaluating the polynomial dire
tly using pre
omputed powers of Kh requires a 96x127-bitmultiply for ea
h
oeÆ
ient.4 The advantage with pre
omputation was �rst observed by Bernsteinin the
ontext of hash127 [3℄.The above des
ription of the pre
omputation approa
h assumed that if the polynomial isY1K
�1h + � � � + Y
�1Kh + Y
 (i.e., the polynomial has

oeÆ
ients), then we had pre
omputedthe powers of Kih for all i 2 f1; : : : ;
 � 1g. The pre
omputation approa
h extends naturally to the
ase where we have pre
omputed the powers Kjh, j 2 f1; : : : ; ng, for some n �
�1. For simpli
ity,�rst assume that we know the polynomial has a multiple of n
oeÆ
ients. For su
h a polynomial,one pro
esses the �rst n
oeÆ
ients (to get Y1Kn�1h + : : :+ Yn�1Kh + Yn), then multiplies the in-termediate result by Knh (to get Y1K2n�1h + : : :+Yn�1Kn+1h +YnKnh). After that, one
an
ontinuepro
essing data with the same pre
omputed values (to get Y1K2n�1h + : : :+Y2n�1Kh+Y2n), and soon. Note that ea
h
hunk of n
oeÆ
ients takes (n� 1) 96x127-bit multiplies, and all but the last
hunk takes an additional 127x127-bit multiply. Now assume that the number of
oeÆ
ients m inthe polynomial is not ne
essarily a multiple of n. If m is known in advan
e, one
ould �rst pro
essm mod n
oeÆ
ients, multiply by Knh , then pro
ess in n-
oeÆ
ient
hunks as before. Alternately,as long as the end of the message is known n
oeÆ
ients in advan
e, one
ould pro
ess n-
oeÆ
ients
hunks, and then �nish o� the �nal m mod n
oeÆ
ients using Horner's rule. Or, if the number of
oeÆ
ients in the polynomial is not known until the �nal
oeÆ
ient is rea
hed, one
ould pro
essthe message in n-
oeÆ
ient
hunks and then multiply by a pre
omputed power of K�1h on
e theend of the message hash been rea
hed.Naturally, pre
omputation requires extra memory, but that is usually
heap and plentiful ina software-based environment. Using 32-bit multiplies, the pre
omputation approa
h requires 1232-bit multiplies per 96-bit
oeÆ
ient, as well as 17 adds, all of whi
h may
arry. In assembly, mostof these
arry operations
an be implemented for free, or
lose to it by using a spe
ial variant ofthe add instru
tion that adds in the operand as well as the value of the
arry from the previousadd operation. But when implemented in C, they will generally
ompile to
ode that requiresa
onditional bran
h and an extra addition. An implementation using Horner's rule requires anadditional four multiplies and three additions with
arry per
oeÆ
ient, adding about 33% overhead,sin
e the multiplies dominate the additions. A 64-bit platform only requires four multiplies andfour adds (whi
h may all
arry), no matter the implementation strategy taken. The multiply beingfar more expensive than other operations, we would thus expe
t a 64-bit integer implementation torun in one third the time of a 32-bit implementation, assuming that the
ost of primitive operationsdoes not in
rease.Exploiting the parallelism of some instru
tion sets. On most platforms, it turns out thatthe integer exe
ution unit is not the fastest way to implement CWC-HASH. Many platforms havemultimedia instru
tions that
an be used to speed up the implementation. As another alternative,4As an aside, see Remark 5.4 for why we did not make the hash subkey 96-bits, whi
h
ould have sped up a serialHorner's rule implementation. 11

www.manaraa.com

Bernstein demonstrated that, on most platforms, the
oating point unit
an be used to implementthis
lass of universal hash fun
tions far more eÆ
iently than
an be done in the integer unit. Thisis parti
ularly true on the x86 platform where, in
ontrast to using the standard registers, two
oating point multiples
an be started in
lose proximity without introdu
ing a pipeline stall. Thatis, the x86
an e�e
tively perform two
oating-point operations in parallel. The disadvantage ofusing
oating-point registers is that the operands for the individual multiplies need to be small,so that the operations
an be done without loss of pre
ision. On the x86, Bernstein multiplies24-bit values, allowing the sums of produ
t terms to �t into double pre
ision values with 53 bitsof pre
ision without loss of information. Bernstein details many ways to optimize this sort of
al
ulation in [3℄.As noted before, there are only two main di�eren
es between the stru
ture of the polynomials ofBernstein's hash127 and CWC-HASH. The �rst is that Bernstein uses signed
oeÆ
ients, whereasCWC-HASH uses unsigned
oeÆ
ients; this should not have an impa
t on eÆ
ien
y. The other dif-feren
e is that Bernstein uses 32-bit
oeÆ
ients, whereas CWC-HASH uses 96-bit
oeÆ
ients. Whileboth solutions average one multipli
ation per byte when using integer math, Bernstein's solutionrequires only .75 additions per byte, whereas CWC-HASH requires 1.42 additions per byte, nearlytwi
e as many. Using 32-bit multiplies to build a 96x127 multiplier (assuming pre
omputation),CWC-HASH should therefore perform no worse than at half the speed of hash127. When using 24-bit
oating point
oeÆ
ients to build a multiply (without applying any non-obvious optimizations),hash127 requires 12 multiplies and 16 adds per 32-bit word. CWC
an get by with 8 multiples perword and 12.67 additions per word. This is be
ause a 96-bit
oeÆ
ient �ts exa
tly into four 24-bitvalues, meaning we
an use a 6x4 multiply for every three words. With 32-bit
oeÆ
ients, we needto use two 24-bit values to represent ea
h
oeÆ
ient, resulting in a single 6x2 multiply that needsto be performed for ea
h word.Gladman's implementation of CWC-HASH uses
oating point arithmeti
, but uses Horner'srule instead of performing pre
omputation to a
hieve extra speed. Nothing about the CWC hashindi
ates that it should run any worse than half the speed of hash127, if implemented in a similarmanner, in assembly, and using the
oating point registers and pre
omputation. This upper-boundpaints an en
ouraging pi
ture for CWC performan
e, be
ause hash127 on a Pentium III runs around4
pb when implemented in assembly and using the
oating point registers and pre
omputation.This indi
ates that a well-optimized software version of CWC-HASH should run no slower than 8
y
les per byte.Finally, it may be possible to further improve the performan
e of CWC-HASH. For example,literature from the gaming
ommunity [6℄ indi
ates that one
an use both integer and
oating pointregisters in parallel. Although we have not tested this approa
h, it seems reasonable to
on
ludethat one might be able to interleave integer operations, and thereby obtain additional speedups.5 Theorem statementsIn addition to parallelizability and performan
e, provable-se
urity was one of our major designrequirements (we reje
ted several
onstru
tions that had weaker provable-se
urity results than wedesired). Consequently, the CWC mode is a provably se
ure AEAD mode assuming that the under-lying blo
k
ipher (e.g., AES) is a se
ure pseudorandom permutation. This is a quite reasonableassumption sin
e most modern blo
k
iphers (in
luding AES) are believed to be pseudorandom.Furthermore, all provably-se
ure blo
k
ipher modes of operation that we are aware of make thesame assumptions we make (and some modes, e.g. OCB [17℄, make even stronger, albeit still rea-sonable, assumptions). 12

www.manaraa.com

The spe
i�
 results for CWC appear as Theorem 5.1 and Theorem 5.2 below. In Appendix Cwe also present results for the general CWC paradigm, from whi
h Theorems 5.1 and 5.2 follow.5.1 PreliminariesBefore presenting our provable se
urity results, we must �rst formally des
ribe what we meanby priva
y and integrity/authenti
ity. Our priva
y and integrity/authenti
ity notions for AEADmodes
ome from [17℄. We must also des
ribe the notion of a pseudorandom permutation.Priva
y of AEAD modes. Let SE = (Ke; E ;D) be an AEAD mode with length fun
tion l(�).Let $(�; �; �) be an ora
le that, on input (N;A;M) 2 Non
eSpSE � AdSpSE � MsgSpSE , returns arandom string of length l(jM j). Let B be an adversary with a

ess to an ora
le and that returns abit. Then AdvprivSE (B) = Pr hK $ Ke : BEK(�;�;�) = 1 i� Pr hB$(�;�;�) = 1 iis the ind$-
pa-advantage of B in breaking the priva
y of SE under
hosen-plaintext atta
ks; i.e.,AdvprivSE (B) is the advantage of B in distinguishing between
iphertexts from EK(�; �; �) and randomstrings. An adversary B is non
e-respe
ting if it never queries its ora
le with the same non
e twi
e.Intuitively, a mode SE preserves priva
y under
hosen plaintext atta
ks if the ind$-
pa-advantageof all non
e-respe
ting adversaries using reasonable resour
es is small.Integrity/authenti
ity of AEAD modes. Let SE = (Ke; E ;D) be an AEAD mode. Let Fbe a forging adversary and
onsider an experiment in whi
h we �rst pi
k a random key K $ Keand then run F with ora
le a

ess to EK(�; �; �). We say that F forges if F returns a pair (N;A;C)su
h that DN;AK (C) 6= INVALID but F did not make a query (N;A;M) to EK(�; �; �) that resulted ina response C. Then AdvauthSE (F) = Pr hK $ Ke : F EK(�;�;�) forges iis the auth-advantage of F in breaking the integrity/authenti
ity of SE . Intuitively, the modeSE preserves integrity/authenti
ity if the auth-advantage of all non
e-respe
ting adversaries usingreasonable resour
es is small.Pseudorandom permutations. If X is a set, then Perm(X) denotes the set of all permutationson X. If L is a positive integer, then and Perm(L) denotes the set of all permutations on f0; 1gL.Let F be a a family of fun
tions from set D to D. Let A be an adversary with a

ess to an ora
leand that returns a bit. ThenAdvprpF (A) = Pr h f $ F : Af(�) = 1 i� Pr h g $ Perm(D) : Ag(�) = 1 idenotes the prp-advantage of A in distinguishing a random instan
e of F from a random permu-tation. Intuitively, we say that F is a se
ure prp if the prp-advantages of all adversaries usingreasonable resour
es is small. Modern blo
k
iphers, su
h as AES, are believed to be se
ure prps.5.2 Integrity/authenti
ityTheorem 5.1 [Integrity/authenti
ity of CWC.℄ Let CWC-BC-tl be as in Se
tion 3. (Re
allthat BC is a 128-bit blo
k
ipher and that the tag length tl is � 128.) Consider a non
e-respe
tingauth adversary A against CWC-BC-tl. Assume the exe
ution environment allows A to query itsora
le with asso
iated data that are at most n � MaxAdLen bits long and with messages that areat most m � MaxMsgLen bits long. Assume A makes at most q � 1 ora
le queries and the totallength of all the payload data (both in these q � 1 ora
le queries and the forgery attempt) is at13

www.manaraa.com

most �. Then given A we
an
onstru
t a prp adversary CA against BC su
h thatAdvauthCWC-BC-tl(A) � AdvprpBC (CA) + (�=128 + 3q + 1)22129 + n+m2133 + 12125 + 12tl : (1)Furthermore, the experiment for CA takes the same time as the experiment for A and CA makesat most �=128 + 3q + 1 ora
le queries.The above theorem means that if the underlying blo
k
ipher is a se
ure pseudorandom permu-tation, then CWC-BC will preserve authenti
ity. If the underlying blo
k
ipher is something likeAES, then this initial assumption seems quite reasonable and, therefore, CWC-AES will preserveauthenti
ity.Let us elaborate on why Theorem 5.1 implies that CWC-BC will preserve authenti
ity. AssumeBC is a se
ure blo
k
ipher. This means that AdvprpBC (C) must be small for all adversaries Cusing reasonable reasonable resour
es and, in parti
ular, this means that, for CA as des
ribed inthe theorem statement, AdvprpBC (CA) must be small assuming that A uses reasonable resour
es.And if AdvprpBC (CA) is small and �; q;m and n are small, then, be
ause of the above equations,AdvauthCWC-BC-tl(A) must also be small as well. I.e., any adversary A using reasonable resour
es willonly be able to break the authenti
ity of CWC-BC-tl with some small probability.Let us
onsider some
on
rete examples. Let n = MaxAdLen and m = MaxMsgLen, whi
h is themaximum possible allowed by the CWC-BC
onstru
tion. Then Equation 1 be
omesAdvauthCWC-BC-tl(A) � AdvprpBC (CA) + (�=128 + 3q + 1)22129 + 1293 + 12tl :If we limit the number of appli
ations of CWC-BC between rekeyings to some reasonable value su
has q = 232, if we limit the total number of payload bits between rekeyings to � = 250, and if wetake tl � 43, then the above equation be
omesAdvauthCWC-BC-tl(A) � AdvprpBC (CA) + 1241whi
h means that, assuming that the underlying blo
k
ipher is a se
ure prp, an atta
ker will notbe able to break the unforgeability of CWC-BC-tl with probability mu
h greater than 2�41.5.3 Priva
yTheorem 5.2 [Priva
y of CWC.℄ Let CWC-BC-tl be as in Se
tion 3. Then given a non
e-respe
ting ind$-
pa adversary A against CWC-BC-tl one
an
onstru
t a prp adversary CA againstBC su
h that if A makes at most q ora
le queries totaling at most � bits of payload message data,then AdvprivCWC-BC-tl(A) � AdvprpBC (CA) + (�=128 + 3q + 1)22129 : (2)Furthermore, the experiment for CA takes the same time as the experiment for A and CA makesat most �=128 + 3q + 1 ora
le queries.We interpret Theorem 5.2 in the same way we interpreted Theorem 5.1. In parti
ular, this theoremshows that if BC is a se
ure pseudorandom permutation, then CWC-BC-tl preserves priva
y under
hosen-plaintext atta
ks.As a
on
rete example of why Theorem 5.2 implies that CWC-BC preserves priva
y under
hosen-plaintext atta
ks, let us again
onsider the
ase where q = 232 and � = 250. Then Equation 2be
omes AdvprivCWC-BC-tl(A) � AdvprpBC (CA) + 124214

www.manaraa.com

whi
h means that, assuming that the underlying blo
k
ipher is a se
ure prp, an atta
ker will notbe able to break the priva
y of CWC-BC-tl with advantage mu
h greater than 2�42.Remark 5.3 [Chosen-
iphertext priva
y.℄ Sin
e CWC-BC-tl preserves priva
y under
hosen-plaintext atta
ks (Theorem 5.2) and provides integrity (Theorem 5.1) assuming that BC is a se
urepseudorandom permutation, it also provides priva
y under
hosen-
iphertext atta
ks under thesame assumption about BC. See [1, 16℄ for a dis
ussion of the relationship between
hosen-plaintextpriva
y, integrity, and
hosen-
iphertext priva
y; this relationship was also used, for example, bythe designers of OCB [17℄.5.4 RemarksWe
lose this se
tion with some additional remarks on the design of CWC and several additionalvariants that we
onsidered.Remark 5.4 [On the length of the hash subkey.℄ It is possible to use smaller subkeys Khin CWC-HASH (simply trun
ate BCK(110126) appropriately). Re
all that we have �xed the blo
klength of BC to 128 bits. Let hkl denote the length of the hash subkey in an altered
onstru
tion.If hkl < 127, then the upper-bound in Equation 1 be
omesAdvprpBC (CA) + (�=128 + 3q + 1)22129 + (n+m)=96 + 22hkl + 12tl :Consider an appli
ation that sets hkl to 96. If we repla
e m and n by their maximum possiblevalues, the upper-bound be
omesAdvprpBC (CA) + (�=128 + 3q + 1)22129 + 1262 + 12tl :Sin
e 2�62 is already very small (and, in fa
t, dominated by the (�=128 + 3q + 1)2 � 2�129 termfor some reasonable values of q and �), from a provable-se
urity perspe
tive, developers would bejusti�ed in using 96-bit hash subkeys.Rather than use shorter hash subkeys, however, our
urrent CWC instantiation in Se
tion 3uses 127-bit hash subkeys. We do so for several reasons. First, in hardware, to obtain maximumspeed, one would parallelize the CWC hash fun
tion by evaluating, for example, two polynomialsin K2h in parallel. Sin
e K2h would generally not be 96-bits long, there is no performan
e advantagewith using 96-bit subkeys Kh in this situation. In software, the use of 96-bit hash subkeys
ouldlead to improved performan
e when evaluating the polynomial using Horner's rule. However, theperforman
e of su
h a
onstru
tion is essentially equivalent to the performan
e of the
urrent
onstru
t when not using Horner's rule but using pre-
omputed powers of Kh. Sin
e we believethat high-performan
e implementations will not bene�t from the use of 96-bit hash subkeys (i.e.,the additional 31 key bits
ome with no or negligible additional
ost), we have
hosen to �x thelength of our hash subkeys to 127 bits.Developers of CWC derivatives may, however, wish to use shorter hash subkeys, and we donot prevent that (although we do suggest referring to su
h modes in su
h a way as to avoid
onfusion with CWC-BC). We also suggest that developer's understand the impa
t of using shorterhash subkeys. For example, using a 64-bit hash subkey would in
rease the upper-bound on theprobability of an adversary forging to around 2�30, whi
h may be too large for some appli
ations.Remark 5.5 [On
omputing the tag.℄ In CWC the MAC
onsisted of hashing (A; �), en
ipher-ing the hash with the blo
k
ipher, and then xoring the result with some keystream (i.e., in the
urrent proposal the tag is BCK(107kNk032)�BCK(CWC-HASHK(A; �))). One question the reader15

www.manaraa.com

might have is whether two blo
k
ipher invo
ations are ne
essary. We �rst
omment that the
ostof two blo
k
ipher operations per MAC is not parti
ularly signi�
ant
ompared to the total
ostof CWC. CWC-AES as
urrently spe
i�ed already a
hieves its design goal of en
rypting 10 Gbps inhardware. And, in software, the extra
ost of one blo
k
ipher operation is quite minor for averagepa
kets, and less than approximately 15% for 64-byte pa
kets. Nevertheless, the use of two blo
k
ipher appli
ations for the tag might seem aestheti
ally unappealing to some.Instead of the two blo
k
ipher appli
ations, one
ould use BCK(h0K(N;A; �)) as the tag, whereh0 is a modi�ed version of CWC-HASH designed to hash 3-tuples instead of pairs of strings (this isimportant be
ause the non
e must also be authenti
ated). The main disadvantage of this approa
his that it would
hange the upper-bound in Equation 1 toAdvprpBC (CA) + (�=128 + 3q + 1)22129 + q2 ��n+m2133 + 12125�+ 12tl(note the new q2 term). If we set n = MaxAdLen, m = MaxMsgLen, q = 232, and � = 250, thenfor any tl � 29, we get that the advantage of an adversary in breaking the unforgeability of thismodi�ed CWC variant is upper-bounded by 2�27, whi
h, although not extremely large, is worsethan the upper-bound of 2�41 we get using Equation 1. Even if n and m are at most one millionblo
ks long, we see that the integrity upper-bound for the altered CWC
onstru
tion is worsethan the upper-bound for the CWC
onstru
tion we present in Se
tion 3. More generally, thismeans that for reasonable values of n;m; q; �, the inse
urity upper-bounds of this alternative willbe worse than the inse
urity upper-bounds of the CWC mode des
ribed in Se
tion 3. Furthermore,the upper-bound would be even worse if one keys the hash fun
tion with shorter keys, whi
h somedevelopers might
hoose to do (re
all Remark 5.4).Another possible way to redu
e the number of blo
k
ipher invo
ations ne
essary to
omputethe MAC would be to take the output of the
urrent hash fun
tion and run it through anotherhash fun
tion that is almost-xor-universal (see Appendix C for a des
ription of this property).However, this approa
h is not attra
tive be
ause it requires additional key material. In parti
ular,while this approa
h may save one blo
k
ipher operation, in hardware the blo
k
ipher operationis a
tually smaller and simpler than managing the extra key material, given that the hardwarealready has a blo
k
ipher en
ryptor running at high speed.Another possibility would be to use something like BCK(N) + Y1K�+2h + � � �+ Y�K3h + lAK2h +l�Kh mod 2127 � 1, en
oded as a 127-bit string and trun
ated to tl bits, as the MAC (here BCK(N)is interpreted as an integer). Doing so would, however, result in a new integrity upper-boundAdvprpBC (CA) + (�=128 + 2q + 1)2 + 4q + 42129 + (n+m)=96 + 52tl :If we take n and m to be MaxAdLen and MaxMsgLen, respe
tively, then the upper-bound be
omesAdvprpBC (CA) + (�=128 + 2q + 1)2 + 4q + 42129 + 2342tl :Compared to Equation 1, we see the presen
e of a 234�tl term. This means that, in some situations,when using the above upper-bound as a guide for parameter sele
tion, tag lengths must be longerthan one might expe
t. For example, if tl = 32, then the above equation would upper-bound theadvantage of an adversary against this modi�ed
onstru
tion as 1. This means that 32-bit tagsshould not be used with this modi�ed
onstru
tion when authenti
ating long messages. While onemight
onsider this more of a \
erti�
ational" problem than a real problem, we view this propertyas undesirable. Hen
e our de
ision to spe
ify CWC as in Se
tion 3.
16

www.manaraa.com

6 Con
lusionsIn this work we present CWC, the �rst patent-free, parallelizable, and provably-se
ure dedi
atedblo
k
ipher mode of operation. Be
ause of its inherent parallelism, CWC-AES is
apable of pro-
essing data at 10 Gbps in hardware, making it ideal for use with
oming 10 Gbps IPse
 networkdevi
es. CWC-AES is also eÆ
ient in software, with the
urrent implementation
omparable to
urrent implementations of the other patent-free (albeit not parallelizable) modes of operationsCCM-AES and EAX-AES. In software, we anti
ipate signi�
ant speedups after swit
hing to as-sembly and using the pre
omputation approa
h for CWC-HASH dis
ussed in Se
tion 4. Finally,CWC-AES is provably se
ure assuming that AES is a se
ure pseudorandom permutation, whi
h isa reasonable assumption and, in fa
t, was one of the AES design
riteria.A
knowledgmentsWe thank Peter Gutmann, David M
Grew, Fabian Monrose, Avi Rubin, Adam Stubble�eld, andDavid Wagner for their
omments. Additionally, we thank Brian Gladman for helping to validateour test ve
tors and for working with us to obtain timing information. T. Kohno was supportedby a National Defense S
ien
e and Engineering Fellowship.Referen
es[1℄ M. Bellare and C. Namprempre. Authenti
ated en
ryption: Relations among notions andanalysis of the generi

omposition paradigm. In T. Okamoto, editor, Advan
es in Cryptology{ ASIACRYPT 2000, volume 1976 of Le
ture Notes in Computer S
ien
e, pages 531{545.Springer-Verlag, Berlin Germany, De
. 2000.[2℄ M. Bellare, P. Rogaway, and D. Wagner. A
onventional authenti
ated-en
ryption mode, 2003.Available at http://eprint.ia
r.org/2003/069/.[3℄ D. Bernstein. Floating-point arithmeti
 and message authenti
ation, 2000. Available at http://
r.yp.to/papers.html#hash127.[4℄ B. Gladman. AES and
ombined en
ryption/authenti
ation modes, 2003. Available at http://fp.gladman.plus.
om/AES/index.htm.[5℄ V. Gligor and P. Dones
u. Fast en
ryption and authenti
ation: XCBC en
ryption and XECBauthenti
ation modes. In Fast Software En
ryption 2001, Le
ture Notes in Computer S
ien
e.Springer-Verlag, Berlin Germany, 2001.[6℄ C. He
ker. Perspe
tive texture mapping, part V: It's about time. Game Developer, Apr. 1996.Available at http://www.d6.
om/users/
he
ker/pdfs/gdmtex5.pdf.[7℄ C. Jutla. En
ryption modes with almost free message integrity. In B. P�tzmann, editor,Advan
es in Cryptology { EUROCRYPT 2001, volume 2045 of Le
ture Notes in ComputerS
ien
e, pages 529{544. Springer-Verlag, Berlin Germany, May 2001.[8℄ J. Katz and M. Yung. Unforgeable en
ryption and
hosen
iphertext se
ure modes of operation.In B. S
hneier, editor, Fast Software En
ryption 2000, volume 1978 of Le
ture Notes inComputer S
ien
e, pages 284{299. Springer-Verlag, Berlin Germany, Apr. 2000.17

www.manaraa.com

[9℄ H. Kraw
zyk. LFSR-based hashing and authenti
ation. In Y. Desmedt, editor, Advan
esin Cryptology { CRYPTO '94, Le
ture Notes in Computer S
ien
e. Springer-Verlag, BerlinGermany, Aug. 1994.[10℄ H. Kraw
zyk. The order of en
ryption and authenti
ation for prote
ting
ommuni
ations (or:How se
ure is SSL?). In J. Kilian, editor, Advan
es in Cryptology { CRYPTO 2001, volume2139 of Le
ture Notes in Computer S
ien
e, pages 310{331. Springer-Verlag, Berlin Germany,Aug. 2001.[11℄ H. Lipmaa. AES/Rijndael: speed, 2003. Available at http://www.t
s.hut.fi/~helger/aes/rijndael.html.[12℄ D. M
Grew. Integer
ounter mode, O
t. 2002. Available at http://www.ietf.org/internet-drafts/draft-irtf-
frg-i
m-00.txt.[13℄ D. M
Grew. The trun
ated multi-modular hash fun
tion (TMMH), version two, O
t. 2002.Available at http://www.ietf.org/internet-drafts/draft-irtf-
frg-tmmh-00.txt.[14℄ D. M
Grew. The universal se
urity transform, O
t. 2002. Available at http://www.ietf.org/internet-drafts/draft-irtf-
frg-ust-00.txt.[15℄ P. Rogaway. Bu
ket hashing and its appli
ations to fast message authenti
ation. Journal ofCryptology, 12:91{115, 1999.[16℄ P. Rogaway. Authenti
ated en
ryption with asso
iated data. In Pro
eedings of the 9th Con-feren
e on Computer and Communi
ations Se
urity, Nov. 2002.[17℄ P. Rogaway, M. Bellare, J. Bla
k, and T. Krovetz. OCB: A blo
k-
ipher mode of operationfor eÆ
ient authenti
ated en
ryption. In Pro
eedings of the 8th Conferen
e on Computer andCommuni
ations Se
urity, pages 196{205. ACM Press, 2001.[18℄ P. Rogaway and D. Wagner. A
ritique of CCM, Apr. 2003. Available at http://eprint.ia
r.org/2003/070/.[19℄ D. Stinson. Universal hashing and authenti
ation
odes. Designs, Codes and Cryptography,4:369{380, 1994.[20℄ M. Wegman and L. Carter. New hash fun
tions and their use in authenti
ation and set equality.Journal of Computer and System S
ien
es, 22:265{279, 1981.[21℄ D. Whiting, N. Ferguson, and R. Housley. Counter with CBC-MAC (CCM). Submission toNIST. Available at http://
sr
.nist.gov/CryptoToolkit/modes/proposedmodes/, 2002.A Intelle
tual property statementThe authors hereby expli
itly release any intelle
tual property rights to the CWC mode into thepubli
 domain. The authors are not aware of any patent or patent appli
ation anywhere in theworld that
over this mode.
18

www.manaraa.com

B Summary of propertiesIn this appendix we summarize some of the properties of CWC. We in
lude all of the propertieslisted in the submission guidelines on the NIST Modes of Operation website. We also dis
uss someadditional properties that we feel are important.Se
urity fun
tion. CWC is a provably se
ure authenti
ated en
ryption with asso
iated data(AEAD) mode. Informally, this means that the en
apsulation algorithm, on input a pair of messages(A;M) and some non
e N , en
apsulates (A;M) in a way that prote
ts the priva
y of M and theintegrity of both A and M . Our formal se
urity statements appear in Se
tion 5 and the proofsappear in Appendix C.Error propagation. Assuming that the underlying blo
k
ipher is a se
ure pseudorandomfun
tion or permutation, any attempt, by an adversary using reasonable resour
es, to forge a new
iphertext will, with very high probably, be dete
ted. This follows from the fa
t that CWC is aprovably-se
ure AEAD mode.Syn
hronization. Syn
hronization is based on the non
e. As with other non
e-based AEADmodes, the non
e must either be sent with the
iphertext or the re
eiver must know how to derivethe non
e on its own.Parallelizability. CWC is parallelizable. The amount of parallelism for the hashing portion
anbe determined by the implementor without a�e
ting interoperability.Keying material required. CWC is de�ned to be a single-key AEAD mode. However, CWCdoes internally use two keys (the main blo
k
ipher key and a hash key whi
h is derived using theblo
k
ipher key). Implementors
an de
ide whether to store the derived hash key in memory orwhether to re-derive it as needed.Counter/IV/non
e requirements. CWC uses a 11-o
tet non
e. CWC is provably se
ure aslong as one does not query the en
ryption algorithm twi
e with the same non
e. Although it ispossible to instantiate the generi
 CWC paradigm with other non
e lengths, for CWC the non
esize is �xed at 11-o
tets in order to minimize interoperability issues.Memory requirements. The software memory requirements are basi
ally those of the underlyingblo
k
ipher. For example, fast AES in software requires 4K bytes of table, and about 200 bytes ofexpanded key material. In some situations, software implementations may pre
ompute powers ofthe hash subkey.Pre-pro
essing
apability. The underlying CTR mode keystream
an be pre
omputed. Theonly blo
k
ipher input that
annot be pre
omputed is the output of CWC-HASH.CWC
an prepro
ess its asso
iated data, thereby redu
ing
omputation time if the asso
iateddata remains stati
 or
hanges only infrequently.Message length requirements. The asso
iated data and message
an both be any string ofo
tets with length at most 128 �(232�1) bits. Be
ause there does not appear to be a need to handlestrings of arbitrary bit-length, CWC as
urrently spe
i�ed
annot en
apsulate arbitrary bit-lengthmessages. (As dis
ussed in Se
tion 3, it is easy to modify CWC to handle arbitrary bit-lengthmessages, if desired.)Ciphertext expansion. The
iphertext expansion is the minimum possible while still providing atl-bit tag. That is, on input a pair (A;M), a non
e N , and a key K, CWC-ENCK(N;A;M) outputsa
iphertext C with length jCj = jM j+ tl.Blo
k
ipher invo
ations. If the hash subkey Kh is
omputed as part of the key generation19

www.manaraa.com

pro
ess and not during ea
h invo
ation of the CWC en
apsulation routine, then CWC makes oneblo
k
ipher invo
ation during key setup and djM j=128e+2 blo
k
ipher invo
ations during en
ap-sulation and de
apsulation. If the hash subkey Kh is not
omputed as part of the key generationpro
ess, then CWC makes no blo
k
ipher invo
ations during key setup and djM j=128e + 3 blo
k
ipher invo
ations during en
apsulation and de
apsulation.Provable se
urity. CWC is a provably-se
ure AEAD mode assuming that the underlying blo
k
ipher (e.g., AES) is a se
ure pseudorandom fun
tion or permutation. The proofs of se
urity donot require the blo
k
ipher to satisfy the strong notion of super-pseudorandomness required bysome other blo
k
ipher modes of operation.Number of options and interoperability. CWC uses a minimal number of options. The onlyoptions are the
hoi
e of the underlying blo
k
ipher (and key length) and the tag length. Havingfewer options makes interoperability easier.On-line. The CWC en
ryption algorithm is on-line. This means that CWC
an pro
ess data as itarrives, rather than waiting for the entire message to be bu�ered before beginning the en
ryptionpro
esses. This may be advantageous when en
rypting streaming data sour
es. (Note, however,that, like any other AEAD mode, the de
ryptor should still bu�er the entire message and
he
kthe tag � before revealing the plaintext and asso
iated data.)Patent status. To the best of our knowledge CWC is not
overed by any patents.Performan
e. CWC is eÆ
ient in both hardware and software. In hardware, CWC
an pro
essdata at 10 Gbps.Simpli
ity. Although simpli
ity is a matter of perspe
tive, we believe that CWC is a very simple
onstru
tion. It
ombines standard CTR mode en
ryption with the evaluation of a polynomialmodulo 2127�1. Be
ause of its simpli
ity, we believe that CWC is easy to implement and understand.C Proofs of Theorem 5.1 and Theorem 5.2Before proving Theorem 5.1 and Theorem 5.2, we �rst state results about the general CWC paradigm(see Lemma C.5 and Lemma C.6 below). We then show how Theorems 5.1 and 5.2 follow fromLemmas C.5 and C.6. We then prove these two lemmas.C.1 More de�nitionsWe begin with a few additional de�nitions.Universal hash fun
tions. A hash fun
tion HF = (Kh;H)
onsists of two algorithms andis de�ned over some key spa
e KeySpHF , some message spa
e MsgSpHF , and some hash spa
eHashSpHF . The randomized key generation algorithm returns a random key K 2 KeySpHF ; wedenote this as K $ Kh. The deterministi
 hash algorithm takes a key K 2 KeySpHF and amessage M 2 MsgSpHF and returns a hash value h 2 HashSpHF ; we denote this as h HK(M).Let H $ HF be shorthand for K $ Kh ; H HK .The hash fun
tionHF is said to be �-almost universal (�-au) if for all distin
tm;m0 2 MsgSpHF ,Pr hH $ HF : H(m) = H(m0) i � � :The hash fun
tion HF is said to be �-almost xor universal (�-axu) if HashSpHF = f0; 1gn forsome positive integer n and for all distin
t m;m0 2 MsgSpHF and
 2 f0; 1gn,Pr hH $ HF : H(m)�H(m0) =
 i � � :20

www.manaraa.com

Pseudorandom fun
tions. If X and Y are sets, then Fun
(X;Y) denotes the set of all fun
tionsfrom X to Y . If l and L are positive integers, then Fun
(l; L) denotes the set of all fun
tions fromf0; 1gl to f0; 1gL.Let F be a family of fun
tions from D to R. Let A be an adversary with a

ess to an ora
leand that returns a bit. ThenAdvprfF (A) = Pr h f $ F : Af(�) = 1 i� Pr h g $ Fun
(D;R) : Ag(�) = 1 idenotes the prf-advantage of A in distinguishing a random instan
e of F from a random fun
tion.Intuitively, we say that F is a se
ure prf if the prf-advantages of all adversaries using reasonableresour
es is small.Message authenti
ation. A non
ed message authenti
ation s
hemeMA = (Km;T ;V)
onsistsof three algorithms and is de�ned over some key spa
e KeySpMA, some non
e spa
e Non
eSpMA,some message spa
e MsgSpMA, and some tag spa
e TagSpMA. The randomized key generationalgorithm returns a key K 2 KeySpMA; we denote this as K $ Km. The deterministi
 taggingalgorithm T takes a key K 2 KeySpMA, a non
e N 2 Non
eSpMA, and a message M 2 MsgSpMAand returns a tag � 2 TagSpMA; we denote this pro
ess as � T NK (M) or � TK(N;M).The deterministi
 veri�
ation algorithm V takes as input a key K 2 KeySpMA, a non
e N 2Non
eSpMA, a message M 2 MsgSpMA, and a
andidate tag � 2 f0; 1g�,
omputes � 0 = T NK (M),and returns a

ept if � 0 = � and returns reje
t otherwise.Let F be a forging adversary and
onsider an experiment in whi
h we �rst pi
k a random keyK $ Km and then run F with ora
le a

ess to TK(�; �). We say that F forges if F returns a triple(N;M; �) su
h that VNK (M; �) = a

ept but F did not make a query (N;M) to TK(�; �) that resultedin a response � . Then AdvufMA(F) = Pr hK $ Km : F TK(�;�) forges idenotes the uf-advantage of F in breaking the unforgeability of MA. An adversary is non
e-respe
ting if it never queries its tagging ora
le with the same non
e twi
e. Intuitively, MA isunforgeable if the uf-advantage of all non
e-respe
ting adversaries with reasonable resour
es issmall.C.2 The general CWC
onstru
tionWe now des
ribe our generalization of the CWC
onstru
tion.Constru
tion C.1 [General CWC.℄ Let l; L; n; o; t; k be positive integers su
h that t � L. (Fur-ther restri
tions will be pla
ed shortly.) Essentially, l is the length of the input to a prf (e.g., 128),L is the length of the output from the prf (e.g., 128), n is the length of the non
e (e.g., 88), o isthe length of the o�set (e.g., 32), t is the length of the desired tag (e.g., 64 or 128), k is the lengthof the hash fun
tion's keysize (e.g., 127).Let F be a family of fun
tions from f0; 1gl to f0; 1gL. Let HF = (Kh;H) be a family of hashfun
tions with HashSpHF = f0; 1gl and KeySpHF = f0; 1gk (and Kh works by randomly sele
tingand returning an element from f0; 1gk with uniform probability). Let
tr0 : Zdk=Le ! f0; 1gl,
tr1 : f0; 1gn�(Z2o�f0g)! f0; 1gl and
tr2 : f0; 1gn ! f0; 1gl be eÆ
iently-
omputable inje
tivefun
tions. If W = f
tr0(O) : O 2 Zdk=Le g, X = f
tr1(N;O) : N 2 f0; 1gn; O 2 (Z2o � f0g) g,Y = f
tr2(N) : N 2 f0; 1gn g, and Z = f HK(M) : K 2 KeySpHF ;M 2 MsgSpHF g, we requirethat W , X, Y , and Z be pairwise mutually ex
lusive.Let extra
t : f0; 1gdk=Le�L ! f0; 1gk be a fun
tion that takes as input a dk=Le �L-bit string andthat outputs a k-bit string. We require that extra
t always pi
k the same k bits from the input21

www.manaraa.com

string and always outputs those bits in the exa
t same order (e.g., extra
t returns the �rst k bitsof its input).Let SE [F;HF ℄ = (Ke; E ;D) be an AEAD mode built from fun
tion family F and hash fun
-tion HF and using the above fun
tions extra
t,
tr0,
tr1,
tr2. We assume that AdSpSE[F;HF℄ �MsgSpSE[F;HF℄ � MsgSpHF and that all messages in MsgSpSE[F;HF℄ have length at most L � (2o�1).Note that the former means that the message spa
e of HF a
tually
onsists of pairs of strings. LetNon
eSpSE[F;HF℄ = f0; 1gn. Let SE [F;HF ℄'s
omponent algorithms be de�ned as follows:Algorithm Kef $ FKh extra
t(f(
tr0(0))kf(
tr0(1))k � � � kf(
tr0(dk=Le � 1))) ; H HKhReturn hf;HiAlgorithm EN;Ahf;Hi(M)� CTR-MODENf (M)� �rst t bits of (f(
tr2(N))� f(H(A; �)))Return �k�Algorithm DN;Ahf;Hi(C)If jCj < t then return INVALIDParse C as �k� // j� j = tIf A 62 AdSpSE[F;HF℄ or � 62 MsgSpSE[F;HF℄ then return INVALID� 0 �rst t bits of (f(
tr2(N))� f(H(A; �)))If � 6= � 0 return INVALIDM CTR-MODENf (�)Return MAlgorithm CTR-MODENf (X)� djXj=LeFor i = 1 to � doZi f(
tr1(N; i))Y (�rst jXj bits of Z1kZ2k � � � kZ�)�XReturn YRemark C.2 Re
all that one requirement on the message spa
e for any AEAD mode is that if it
ontains any string M , then it
ontains all strings of length jM j. This means that the membershiptest � 62 MsgSpSE[F;HF℄ and the appli
ation of H to (A; �) makes sense.Remark C.3 As spe
i�ed in the de�nition, AdSpSE[F;HF℄ � MsgSpSE[F;HF℄ � MsgSpHF . Thismeans that we HF is used to hash pairs of strings, not just string. This is not a serious restri
tionsin
e given any hash fun
tion that hashes strings, it is trivial to
onstru
t a hash fun
tion thathashes pairs of strings (by en
oding the pair of strings as a single string in some appropriatemanner).Remark C.4 It is also worth
ommenting on the purpose of
tr0,
tr1, and
tr2. As shown inConstru
tion C.1, these fun
tions are used to derive the inputs to the
onstru
tion's underlyingfun
tion f . By requiring that none of the outputs
ollide (i.e., that the sets W;X; Y; Z in thede�nition are pairwise mutually ex
lusive), we ensure that the inputs to f for di�erent purposesnever
ollide. For example, the inputs to f used for
ounter mode en
ryption will always be di�erentthan the inputs to f when en
iphering the output of H.22

www.manaraa.com

C.3 The se
urity of the general CWC
onstru
tionWe now state the following results for all Constru
tion C.1-style AEAD modes. We shall proveLemmas C.5 and C.6 in Appendi
es C.5 and C.6, respe
tively.Lemma C.5 [Integrity of Constru
tion C.1.℄ Let SE [F;HF ℄ be as in Constru
tion C.1 andlet HF be an �-au hash fun
tion. Then given any non
e-respe
ting auth adversary A againstSE [F;HF ℄, we
an
onstru
t a prf adversary BA against F su
h thatAdvauthSE[F;HF℄(A) � AdvprfF (BA) + �+ 2�t :Furthermore, the experiment for BA takes the same time as the experiment for A and, if A makesat most q�1 ora
le queries and a total of at most � bits of payload data (for both these q�1 ora
lequeries and the forgery attempt), then BA makes at most �=L+ 3q + dk=Le ora
le queries.Lemma C.6 [Priva
y of Constru
tion C.1.℄ Let SE [F;HF ℄ be as in Constru
tion C.1. Thengiven a non
e-respe
ting ind$-
pa adversary A against SE [F;HF ℄ one
an
onstru
t a prf adver-sary BA against F su
h that AdvprivSE[F;HF℄(A) � AdvprfF (BA) :Furthermore, the experiment for BA takes the same time as the experiment for A and, if A makesat most q ora
le queries totaling at most � bits of payload data, then BA makes at most �=L +3q + dk=Le ora
le queries.We interpret these lemmas as follows. Intuitively, the �rst lemma states that if F is a se
ure prf,if HF is �-au where � is not too large, and if t is not too small, then SE [F;HF ℄ preserves integrity.We
omment that most modern blo
k
iphers (e.g., AES) are
onsidered to be se
ure prps (andtherefore also se
ure prfs up to a birthday term). We also
omment that we
an
onstru
t hashfun
tions HF with provably small �.Intuitively, the se
ond lemma states that if F is a se
ure prf, then SE [F;HF ℄ will preservepriva
y. We dis
uss the meaning of these types of proofs in more detail in Se
tion 5.C.4 Proof of Theorem 5.1 and Theorem 5.2The se
urity of the CWC
onstru
tion from Se
tion 3 follows from Lemmas C.5 and C.6 assumingthat (1) CWC as des
ribed in Se
tion 3 is really an instantiation of Constru
tion C.1 and (2) thatthe hash fun
tion used in Se
tion 3 is �-au for some small �. We begin by justifying the se
ondbullet.Lemma C.7 [CWC-HASH (Se
tion 3) is �-almost universal.℄ Consider the CWC-BC-tl
on-stru
tion from Se
tion 3. Let HF = (Kh;H) be the hash fun
tion fun
tion whose key generationalgorithm sele
ts a random key K from f0; 1g127 and let HK be the CWC-HASH fun
tion ex
eptthat we repla
e Z last 127 bits of BCK(110126)with Z K :Note that AdSpCWC-BC-tl � MsgSpCWC-BC-tl � MsgSpHF ; that is, HK takes two strings as input.Assume HF hashes pairs of strings where the �rst string is always at most n � MaxAdLen bits long23

www.manaraa.com

and the se
ond string is always at most m � MaxMsgLen bits long. Then HF is �-almost universalwhere � � n+m2133 + 12125 :Proof of Lemma C.7: Let (A; �) and (A0; �0) be two distin
t inputs to HK and let X =(B1; : : : ; B�+1) and Y = (C1; : : : ; C
+1) respe
tively denote their en
odings as ve
tors of 96-bitintegers (with B�+1 and C
+1 possibly longer than 96-bits long). Without loss of generality, assume� �
 and let X 0 = (B01; : : : ; B0
+1) where B0j = 0 for j 2 f1; : : : ;
 � �g and B0j = Bj�
+� forj 2 f
 � � + 1; : : : ;
 + 1g (i.e., prepend
 � � zero elements to the X ve
tor).If (A; �) 6= (A0; �0) then X 0 6= Y . This follows from the fa
t that B0
+1 and C
+1 respe
tivelyen
ode the lengths of A and � and of A0 and �0 and that if X 0 = Y , then the B0
+1 = C
+1 and(A; �) = (A0; �0).Note that HK(A; �) = HK(A0; �0) when�B01 �K
h + � � � +B0
 �Kh +B0
+1�� �C1 �K
h + � � � +C
 �Kh + C
+1� = 0 mod 2127 � 1 (3)where Kh is the hash key derived from K as spe
i�ed in CWC-HASH. Sin
e the ve
tors X 0 and Yare not equal, �B01 �K
h + � � �+B0
 �Kh +B0
+1�� �C1 �K
h + � � �+C
 �Kh +C
+1� is a non-zeropolynomial of degree at most
. Therefore, by the Fundamental Theorem of Algebra, Equation 3has at most
 solution modulo 2127 � 1.Sin
e we are interested in the probability, over the 127-bit keys K, that Equation 3 is true, we notethat all keys Kh modulo 2127 � 1 (ex
ept 0) have exa
tly one ways of o

urring and that the 0 key
an o

ur in one additional way (i.e., the all 0 string and the all 1 string). This means that of the2127 possible keys K, at most
 + 1
an lead to keys Kh su
h that Equation 3 is true.Finally, note that
 is at most 2 + (n+m)=96 (the +2
omes from the fa
t that we append 0 bitsto A and �). Consequently � � n+m96 + 32127 � n+m2133 + 12125as desired.We now prove Theorem 5.1 and Theorem 5.2, whi
h are
orollaries of Lemmas C.5, C.6, and C.7.Proof of Theorem 5.1 and Theorem 5.2: To prove these theorems we must show that theCWC-BC-tl
onstru
tions from Se
tion 3 are instantiations of Constru
tion C.1. We begin by notingthat the blo
k
ipher BC in CWC-BC-tl plays the role of F in Constru
tion C.1 and that the hashfun
tion CWC-HASH (with the simpli�ed key generation algorithm from Lemma C.7) plays the roleof HF in Constru
tion C.1.Sin
e BC plays the role of F , we have that l = L = 128. Furthermore, as des
ribed in Se
tion 3,n = 88, o = 32, t = tl, and k = 127. We note that the output the hash fun
tion is a 128-bitstring whose �rst bit is always 0. This property, as well as the en
odings for the non
e/o�sets whenen
rypting the message and the Carter-Wegman MAC and when generating the hash key, ensurethat requisite properties for the intera
tions between the hash fun
tion,
tr0,
tr1, and
tr2.A dire
t
omparison of the Constru
tion C.1 algorithms and the algorithms from Se
tion 3 showsthat they are equivalent. CWC-BC-tl is therefore an instantiation of Constru
tion C.1 and theprovable se
urity of CWC-BC-tl follows. 24

www.manaraa.com

Finally, we apply the standard prf-prp swit
hing te
hnique in order to model the underlying blo
k
ipher as a prp rather than a prf in Theorem 5.1 and Theorem 5.2.C.5 Proof of Lemma C.5We being by sket
hing the proof of Lemma C.5. We �rst show that applying a random fun
tionto the output of an �-au hash fun
tion yields an �0-axu hash fun
tion (Proposition C.9). We thenre
all the result of Kraw
zyk [9℄ that xoring the output of an axu hash fun
tion with a one-timepad yields a se
ure MAC (Proposition C.11). Su
h a MAC essentially
orresponds to the se
ondand third boxed steps in Constru
tion C.1. (We do not need this �nal blo
k
ipher appli
ation ifthe input to the hash in
ludes the non
e and if we a

ept a birthday term of the form q2�.)We then observe that if we
onsider a
onstru
tion like Constru
tion C.1 but with the lattertwo boxed steps repla
ed with
alls to a se
ure MAC that tags pairs of strings (A; �) with non
esN , then that
onstru
tion would be unforgeable (Proposition C.13). In Proposition C.16 we usethe above results to show that SE [Fun
(l; L);HF ℄ preserves integrity (where SE [Fun
(l; L);HF ℄ isas in Constru
tion C.1). Lemma C.5 follows.From AU to AXU. Let us begin with the following
onstru
tion.Constru
tion C.8 [Building AXU hash fun
tions from AU hash fun
tions.℄ Let HF =(Kh;H) be a hash fun
tion and let HF [t℄ = (Kh;H), t a positive integer, be the hash fun
tionde�ned as follows: Kh H $ HFe $ Fun
(HashSpHF ; f0; 1gt)Return hH; ei HhH;ei(M)Return e(H(M))Note that MsgSpHF [t℄ = MsgSpHF and HashSpHF [t℄ = f0; 1gt.Proposition C.9 Let HF , t, and HF [t℄ be as in Constru
tion C.8. If HF is �-au, then HF [t℄ is(�+ 2�t)-axu.This result follows from a result in [19, 15℄ whi
h states that the
omposition of an �0-axu hashfun
tion, with domain B and range C, with an �-au hash fun
tion, with domain A and range B, isan (�+�0)-axu hash fun
tion with domain A and range C, and the fa
t that the hash fun
tion whosekey generation algorithm returns a random fun
tion from Fun
(HashSpHF ; f0; 1gt) is 2�t-axu.Carter-Wegman MACs. Consider now the following
onstru
tion.Constru
tion C.10 [Building MACs from AXU hash fun
tions.℄ Let HF = (Kh;H) bea hash fun
tion with hash spa
e f0; 1gt, t a positive integer. We
an
onstru
t a non
ed messageauthenti
ation s
hemeMA = (Km;T ;V) as follows:KmH $ HFg $ Fun
(Non
eSpMA; f0; 1gt)Return hH; gi ThH;gi(N;M)Return g(N) �H(M) VhH;gi(N;M; �)If g(N) �H(M) = � thenreturn a

eptElse return reje
tNote that MsgSpMA = MsgSpHF , TagSpMA = f0; 1gt, and that Non
eSpMA is arbitrary.25

www.manaraa.com

We now state the following result, due to Kraw
zyk [9℄.Proposition C.11 Let HF and MA be as in Constru
tion C.10. If HF is �-axu, then for allnon
e-respe
ting uf adversaries F atta
kingMA, AdvufMA(F) � �.As noted in [9℄, this proposition follows from the fa
ts that xoring the output of the hash fun
tionwith g(N) prevents any loss of information (assuming that the adversary is non
e-respe
ting), thata forgery attempt with a previous non
e is upper-bounded by �, and that a forgery attempt witha new non
e is upper-bounded by 2�t � �.En
rypt-then-Authenti
ate. Consider the following En
rypt-then-Authenti
ate [1, 10℄
on-stru
tion.Constru
tion C.12 [En
rypt-then-Authenti
ate.℄ Let l; L; n; o; t be positive integers. (Fur-ther restri
tions will be pla
ed shortly.) Essentially, l is the length of the input to a prf (e.g., 128),L is the length of the output from the prf (e.g., 128), n is the length of the non
e (e.g., 88), o isthe length of the o�set (e.g., 32).Let F be a family of fun
tions from f0; 1gl to f0; 1gL. Let MA = (Km;T ;V) be a messageauthenti
ation s
heme with Non
eSpMA = f0; 1gn and TagSpMA = f0; 1gt. Let
tr1 : f0; 1gn �(Z2o � f0g)! f0; 1gl be an eÆ
iently-
omputable inje
tive fun
tion.Let SE [F;MA℄ = (Ke; E ;D) be an AEAD mode built from fun
tion family F and messageauthenti
ation s
heme MA and using the above fun
tion
tr1. We assume that AdSpSE[F;MA℄ �MsgSpSE[F;MA℄ � MsgSpMA and that all messages inMsgSpSE[F;MA℄ have length at most L�(2o�1).Note that the former means that the message spa
e ofMA a
tually
onsists of pairs of strings. LetNon
eSpSE[F;MA℄ = Non
eSpMA. Let SE [F;MA℄'s
omponent algorithms be de�ned as follows:Algorithm Kef $ FK $ KmReturn hf;KiAlgorithm EN;Ahf;Ki(M)� CTR-MODENf (M)� T NK (A; �)Return �k�Algorithm DN;Ahf;Ki(C)If jCj < t then return INVALIDParse C as �k� // j� j = tIf A 62 AdSpSE[F;MA℄ or � 62 MsgSpSE[F;MA℄ then return INVALID� 0 T NK (A; �)If � 6= � 0 return INVALIDM CTR-MODENf (�)Return MAlgorithm CTR-MODENf (X)� djXj=LeFor i = 1 to � do 26

www.manaraa.com

Zi f(
tr1(N; i))Y (�rst jXj bits of Z1kZ2k � � � kZ�)�XReturn YProposition C.13 Let SE [F;MA℄ be as in Constru
tion C.12. Then given a non
e-respe
tingauth adversary B against SE [F;MA℄, we
an
onstru
t a non
e-respe
ting forgery adversary DBagainstMA su
h that AdvauthSE[F;MA℄(B) � AdvufMA(DB) :Furthermore the experiment for DB uses the same time as the experiment for B and if B makes qen
ryption ora
le queries, then DB makes q tagging ora
le queries.The approa
h used in [1℄ when analyzing En
rypt-then-Authenti
ate
onstru
tions
an be used toprove Proposition C.13. The only di�eren
e is that we
onsider MACs that also take non
es asinput.Combining these
onstru
tions. Let us now
ombine these
onstru
tions.Constru
tion C.14 [Combined CWC.℄ Let l; L; n; o; t; k be positive integers su
h that t � L.(Further restri
tions will be pla
ed shortly.) Essentially, l is the length of the input to a prf (e.g.,128), L is the length of the output from the prf (e.g., 128), n is the length of the non
e (e.g., 88),o is the length of the o�set (e.g., 32), t is the length of the desired tag (e.g., 64 or 128), k is thelength of the hash fun
tion's keysize (e.g., 128).Let F be a family of fun
tions from f0; 1gl to f0; 1gL. Let HF = (Kh;H) be a family of hashfun
tions with HashSpHF = f0; 1gl and KeySpHF = f0; 1gk (and Kh works by randomly sele
tingand returning an element from f0; 1gk with uniform probability). Let
tr1 : f0; 1gn�(Z2o�f0g)!f0; 1gl be an eÆ
iently-
omputable inje
tive fun
tion. Let extra
t : f0; 1gdk=Le�L ! f0; 1gk be afun
tion that takes as input a dk=Le �L-bit string and that outputs a k-bit string. We require thatextra
t always pi
k the same k bits from the input string and always outputs those bits in the exa
tsame order (e.g., extra
t returns the �rst k bits of its input).Let SE [F;HF ℄ = (Ke; E ;D) be an AEAD mode built from fun
tion family F and hash fun
tionHF and using the above fun
tions extra
t and
tr1. We assume that AdSpSE[F;HF℄�MsgSpSE[F;HF℄ �MsgSpHF and that all messages inMsgSpSE[F;HF℄ have length at most L�(2o�1). Note that the for-mer means that the message spa
e ofHF a
tually
onsists of pairs of strings. Let Non
eSpSE[F;HF℄ =f0; 1gn. Let SE [F;HF ℄'s
omponent algorithms be de�ned as follows:Algorithm Kef $ Fd $ Fun
(Zdk=Le; f0; 1gL) ; e $ Fun
(HashSpHF ; f0; 1gt) ; g $ Fun
(Non
eSpSE[F;HF℄; f0; 1gt)Kh extra
t(d(0)kd(1)k � � � kd(dk=Le � 1)) ; H HKhReturn hf;H; e; giAlgorithm EN;Ahf;H;e;gi(M)� CTR-MODENf (M)� g(N) � e(H(A; �))Return �k�
27

www.manaraa.com

Algorithm DN;Ahf;H;e;gi(C)If jCj < t then return INVALIDParse C as �k� // j� j = tIf A 62 AdSpSE[F;HF℄ or � 62 MsgSpSE[F;HF℄ then return INVALID� 0 g(N) � e(H(A; �))If � 6= � 0 return INVALIDM CTR-MODENf (�)Return MAlgorithm CTR-MODENf (X)� djXj=LeFor i = 1 to � doZi f(
tr1(N; i))Y (�rst jXj bits of Z1kZ2k � � � kZ�)�XReturn YProposition C.15 Let SE [F;HF ℄ be as in Constru
tion C.14 and let HF be an �-au hash fun
-tion. Then the advantage of any non
e-respe
ting auth adversary A in breaking the authenti
ityof SE [F;HF ℄ is upper bounded byAdvauthSE[F;HF℄(A) � �+ 2�t :Proof of Proposition C.15: We �rst note that the steps d $ Fun
(Zdk=Le; f0; 1gL) ; Kh extra
t(d(0)kd(1)k � � � kd(dk=Le � 1)) ; H HKh is equivalent to the step H $ HF .Note that e(H(A; �))
an be rewritten as HhH;ei(A; �) where HF [t℄ = (Kh;H) is
omposed fromHF per Constru
tion C.8.Also note that g(N)�HhH;ei(A; �)
an be repla
ed with T NhHhH;ei;gi(A; �) whereMA = (Km;T ;V)is
omposed from HF [t℄ as per Constru
tion C.10.By Proposition C.13, given A we
an
onstru
t an adversary BA againstMA su
h thatAdvauthSE[F;HF℄(A) � AdvufMA(BA) :By Proposition C.11 we know that AdvufMA(BA) � �0where �0 is �+ 2�t (the latter by Proposition C.9).Integrity of SE [Fun
(l; L);HF ℄. We now
onsider the integrity of SE [Fun
(l; L);HF ℄.Proposition C.16 Let SE [Fun
(l; L);HF ℄ be a AEAD mode as in Constru
tion C.1. Then forany non
e-respe
ting auth adversary A against SE [Fun
(l; L);HF ℄, we have thatAdvauthSE[Fun
(l;L);HF ℄(A) � �+ 2�t :Proof of Proposition C.16: Let SE 0[Fun
(l; L);HF ℄ be as in Constru
tion C.14. Note thatSE [Fun
(l; L);HF ℄ and SE 0[Fun
(l; L);HF ℄ are identi
al ex
ept that the former uses only one ran-dom fun
tion f and SE 0[Fun
(l; L);HF ℄ uses four random fun
tions (one to generate the hashkey, one to CTR-mode en
rypt the message, one to en
ipher the output of the hash fun
tion,28

www.manaraa.com

and one to CTR-mode en
rypt the output of the hash fun
tion). Furthermore, re
all that, forSE [Fun
(l; L);HF ℄, there is never a
ollision in the input to f between the four di�erent usesof f (this was a requirement imposed on HF ,
tr0,
tr1, and
tr2). Consequently, the fa
t thatSE 0[Fun
(l; L);HF ℄ uses four random fun
tions and SE [Fun
(l; L);HF ℄ uses one is immaterial.Hen
e the probability that A forges against SE [Fun
(l; L);HF ℄ is the same as the probability thatit forges against SE 0[Fun
(l; L);HF ℄. I.e.,AdvauthSE[Fun
(l;L);HF ℄(A) = AdvauthSE 0[Fun
(l;L);HF ℄(A) :By Proposition C.15, we know the latter probability is upper bounded by �+ 2�t.Proof of Lemma C.5. We now prove Lemma C.5.Proof of Lemma C.5: Adversary BA runs A and replies to A's ora
le queries using its ora
le f .If A returns a valid forgery, BA returns 1, otherwise BA returns 0. This implies thatAdvauthSE[F;HF℄(A) = Pr h f $ F : Bf(�)A = 1 iand AdvauthSE[Fun
(l;L);HF ℄(A) = Pr h f $ Fun
(l; L) : Bf(�)A = 1 i :Sin
e AdvauthSE[Fun
(l;L);HF ℄(A) � �+ 2�tby Proposition C.16, we haveAdvauthSE[F;HF℄(A) = AdvauthSE[F;HF℄(A)�AdvauthSE[Fun
(l;L);HF ℄(A) +AdvauthSE[Fun
(l;L);HF ℄(A)� Pr h f $ F : Bf(�)A = 1 i� Pr h f $ Fun
(l; L) : Bf(�)A = 1 i+ �+ 2�t= AdvprfF (BA) + �+ 2�tas desired.C.6 Proof of Lemma C.6Proof of Lemma C.6: Let BA be a prf adversary against F that uses adversary A and that hasora
le a

ess to a fun
tion g : f0; 1gl ! f0; 1gL. Adversary BA runs A and replies to A's en
ryptionora
le queries using its own ora
le g(�) for the fun
tion f in Constru
tion C.1. Adversary BA returnsthe same bit that A returns. ThenPr h hf;Hi $ Ke : AEhf;hi(�;�;�) = 1 i = Pr h g $ F : Bg(�)A = 1 isin
e when BA is given a random instan
e of F it runsA exa
tly as if A was given the real en
ryptionora
le. Furthermore Pr hA$(�;�;�) = 1 i = Pr h g $ Fun
(l; L) : Bg(�)A = 1 isin
e BA replies to all of A's ora
le queries with independently sele
ted random strings. Conse-quently AdvprivSE[F;HF℄(A) � AdvprfF (BA)as desired. 29

www.manaraa.com

D Test ve
torsVe
tor #1: CWC-AES-128AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FPLAINTEXT: 00 01 02 03 04 05 06 07ASSOC DATA: <None>NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8CHASH VALUE: 2B 9E AE BE 67 3F AE 03 6B 16 EA 31 DC A7 AE 6BAES(HVAL): FC DC 06 4C CD CA FE E3 DE 7A A3 CF 5C 5D B9 7BMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 57 55 DB A5 09 9F 3F 1D60 04 44 97 DE 89 33 A9Ve
tor #2: CWC-AES-192AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80PLAINTEXT: 00 01 02 03 04 05 06 07ASSOC DATA: <None>NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5HASH VALUE: 40 E6 24 83 4B 27 9A 7B 15 42 C7 FE 29 EB 29 A3AES(HVAL): 69 CC 0E 3D 96 98 EB 75 1F 06 A5 90 9B C2 4F 5AMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72CIPHERTEXT: F0 DB A9 74 12 30 01 B0 AF 7A FA 0E 6F 8A D2 3A75 8A 1C 43 69 B9 43 28Ve
tor #3: CWC-AES-256AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00PLAINTEXT: 00 01 02 03 04 05 06 07ASSOC DATA: <None>NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5HASH VALUE: 18 99 E1 A6 1E 6E 37 65 C6 3A 41 99 56 8C D1 BFAES(HVAL): 1C 56 65 0A 22 BC B5 94 AC F3 CA 24 46 03 B8 5EMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B 8E 5C 5E 4C A0 99 A3 65F6 50 D1 8A CB E8 CA FEVe
tor #4: CWC-AES-128AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F30

www.manaraa.com

PLAINTEXT: 00 01 02 03 04 05 06 07ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 7465 78 74 20 68 65 61 64 65 72 2E 00NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8CHASH VALUE: 2E A9 2A A5 28 B1 1C 08 1C C8 2F 24 9B E4 19 8DAES(HVAL): EA 54 F8 3D 56 7F 53 05 88 B1 EA 96 36 79 CD ACMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 41 DD 25 D4 92 2A 92 FB36 CF 0D CE B4 AD 47 7EVe
tor #5: CWC-AES-192AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80PLAINTEXT: 00 01 02 03 04 05 06 07ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 7465 78 74 20 68 65 61 64 65 72 2E 00NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5HASH VALUE: 60 3F FC 24 71 64 2E D9 57 E1 B1 EA F2 F8 B0 34AES(HVAL): D8 39 86 2A 33 5A 54 68 C8 16 DA 47 69 A2 10 EBMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72CIPHERTEXT: F0 DB A9 74 12 30 01 B0 1E 8F 72 19 CA 48 6D 27A2 9A 63 94 9B D9 1C 99Ve
tor #6: CWC-AES-256AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00PLAINTEXT: 00 01 02 03 04 05 06 07ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 7465 78 74 20 68 65 61 64 65 72 2E 00NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5HASH VALUE: 0A C6 B1 39 57 7F 26 DA 94 16 42 E1 6D 73 EC B5AES(HVAL): 4B A5 AD 1E 74 A2 C5 BE AB D0 DA 4D F4 29 83 0CMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B D9 AF 96 58 F6 87 D3 4FF1 73 C1 E3 79 C2 F1 ACVe
tor #7: CWC-AES-128AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FPLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E31

www.manaraa.com

ASSOC DATA: <None>NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8CHASH VALUE: 79 00 74 72 E1 C8 36 96 ED 7A B1 F9 03 6E 94 8BAES(HVAL): 2B 0F 24 69 B1 2B BE 39 C9 40 67 BA F1 25 E2 5BMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 31 E6 6E 57 0B 0F 77 8086 F9 80 75 7E 7F C7 77 3E 80 E2 73 F1 68 89Ve
tor #8: CWC-AES-192AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0EASSOC DATA: <None>NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5HASH VALUE: 2C 5E 3A A4 37 1C 27 D6 E8 6B 76 DC 3D 93 BC 87AES(HVAL): 48 6E 9C E5 C3 16 3E A6 9C D4 D7 E2 7C 9D 92 D2MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72CIPHERTEXT: F0 DB A9 74 12 30 01 B0 E1 42 B7 58 87 C9 00 8ED8 68 D6 3A 04 07 E9 F6 58 6E 31 8E E6 9E A0Ve
tor #9: CWC-AES-256AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0EASSOC DATA: <None>NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5HASH VALUE: 4A 70 29 CC 58 25 52 CB 75 AD C9 60 FF B3 F7 55AES(HVAL): 2B 64 0E 02 CE 51 DE 22 B2 0F 2A 8D C4 23 CD C0MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B 9B C6 2D DE 26 DD 47 B96E 35 44 4C 74 C8 D3 E8 AC 31 23 49 C8 BF 60Ve
tor #10: CWC-AES-128AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FPLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0EASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 7465 78 74 20 68 65 61 64 65 72 2E 00NONCE: FF EE DD CC BB AA 99 88 77 66 55--32

www.manaraa.com

HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8CHASH VALUE: 51 AE 9D 7E 86 BD E0 B2 AA 18 2C 91 87 0A 9C A5AES(HVAL): DF 48 30 BD 1D DC E0 59 B1 C2 0B 29 01 4F 80 10MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 31 E6 6E 57 0B 0F 77 74C1 ED 54 D9 89 21 A7 0F BC EC 71 83 9B 0A C2Ve
tor #11: CWC-AES-192AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0EASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 7465 78 74 20 68 65 61 64 65 72 2E 00NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5HASH VALUE: 51 60 E7 81 DC 64 F9 CD 54 BA 02 40 A2 E8 EE 99AES(HVAL): A0 30 58 13 22 B6 80 53 64 B0 3E 52 41 D2 2D 0AMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72CIPHERTEXT: F0 DB A9 74 12 30 01 B0 E1 42 B7 58 87 C9 00 6686 AC 20 DB A4 B9 1C 0E 3C 87 81 B3 A9 21 78Ve
tor #12: CWC-AES-256AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0EASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 7465 78 74 20 68 65 61 64 65 72 2E 00NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5HASH VALUE: 3F F5 0C 60 E6 01 7A 3C A1 BB B3 54 65 02 85 7CAES(HVAL): 3E EF A2 E4 97 91 82 86 73 0C F6 E9 46 2C CA 15MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B 9B C6 2D DE 26 DD 47 ACE5 99 A2 15 B4 94 77 29 AF ED 47 CB C7 B8 B5Ve
tor #13: CWC-AES-128AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FPLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8FASSOC DATA: <None>NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8C33

www.manaraa.com

HASH VALUE: 58 D5 28 89 4F 1F 6A 52 A6 44 FA 69 65 C0 73 A6AES(HVAL): A3 9E F3 6F 67 1F FA F8 71 0C 83 BB 49 A6 6E BCMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 31 E6 6E 57 0B 0F 77 0F48 5B 82 64 6E CF B9 F9 A0 B0 75 4F D5 94 36 5A08 17 2E 86 A3 4A 3B 06 CF 72 64 E3 CB 72 E4 6EVe
tor #14: CWC-AES-192AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8FASSOC DATA: <None>NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5HASH VALUE: 0D 0A D2 78 1E 8F E8 47 00 85 31 28 B1 E3 49 3AAES(HVAL): 5A 05 AA 45 88 06 A9 C1 DC 5A F6 AF 6F 8F EC F6MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72CIPHERTEXT: F0 DB A9 74 12 30 01 B0 E1 42 B7 58 87 C9 00 A3A4 C4 70 6D 40 41 F4 F9 58 E1 3F D0 D7 60 4D 1E9C B3 5E 76 71 14 90 8E B6 D6 4F 7C 9D F4 E0 84Ve
tor #15: CWC-AES-256AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8FASSOC DATA: <None>NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5HASH VALUE: 02 F2 DA E9 83 72 0E BC DC 77 89 3B 67 CB 3D B7AES(HVAL): B7 F6 AE DE A3 95 35 FE 03 93 08 DF E0 C7 F1 78MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B 9B C6 2D DE 26 DD 47 B5D2 41 06 CA 5D EB 80 A7 B5 71 0A 38 A4 39 8D BA25 FC 95 98 21 B0 23 0F 59 30 13 71 6D 2C 83 D8Ve
tor #16: CWC-AES-128AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FPLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8FASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 7465 78 74 20 68 65 61 64 65 72 2E 0034

www.manaraa.com

NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8CHASH VALUE: 05 EE B6 CB DF A6 E5 B8 4C 65 DD F4 8C C8 25 23AES(HVAL): 62 E5 23 FE 48 8F BC 14 E3 77 15 6C 4D 0F D0 8BMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 31 E6 6E 57 0B 0F 77 0F48 5B 82 64 6E CF B9 F9 A0 B0 75 4F D5 94 36 5AC9 6C FE 17 8C DA 7D EA 5D 09 F2 34 CF DB 5A 59Ve
tor #17: CWC-AES-192AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8FASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 7465 78 74 20 68 65 61 64 65 72 2E 00NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5HASH VALUE: 10 E1 48 E2 D0 68 39 EC C4 0A 6C A3 D6 8B 47 54AES(HVAL): 23 0A 37 C3 48 7C 9F 76 05 B9 5D 1A 21 D5 D5 FDMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72CIPHERTEXT: F0 DB A9 74 12 30 01 B0 E1 42 B7 58 87 C9 00 A3A4 C4 70 6D 40 41 F4 F9 58 E1 3F D0 D7 60 4D 1EE5 BC C3 F0 B1 6E A6 39 6F 35 E4 C9 D3 AE D9 8FVe
tor #18: CWC-AES-256AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8FASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 7465 78 74 20 68 65 61 64 65 72 2E 00NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5HASH VALUE: 09 4D C5 21 94 79 E0 58 4E E9 C1 2C 29 6A E3 A4AES(HVAL): E9 69 49 47 09 07 62 3B A9 8D AD 51 9F D5 D1 F7MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B 9B C6 2D DE 26 DD 47 B5D2 41 06 CA 5D EB 80 A7 B5 71 0A 38 A4 39 8D BA7B 63 72 01 8B 22 74 CA F3 2E B6 FF 12 3E A3 5735

