
www.manaraa.com

This paper was previously titled \The CWC authentiated enryption (assoiated data) mode."
High-speed enryption and authentiation:A patent-free solution for 10 Gbps network deviesTadayoshi KohnoUC San Diego9500 Gilman Drive, MC 0114La Jolla, CA 92093tkohno�s.usd.edu John ViegaVirginia Teh6066 Leesburg Pike, Suite 500Falls Churh, VA 22041viega�seuresoftware.om Doug WhitingHifn, In.5973 Avenida Eninas, Suite 110Carlsbad, CA 92009dwhiting�hifn.omSeptember 1, 2003AbstratWe introdue CWC, the �rst patent-free and parallelizable dediated blok ipher mode ofoperation apable of enrypting and authentiating data at 10 Gbps in hardware using on-ventional ASIC tehnology. In addition to being designed for use with future 10 Gbps IPsenetwork devies, CWC was also designed to be eÆient in software on modern CPUs. CWC isalso provably seure under the standard \authentiated enryption with assoiated data" notionassuming that the underlying blok ipher is a seure pseudorandom permutation, whih is areasonable assumption if the underlying blok ipher is AES. All other \authentiated enryp-tion" blok ipher modes are either patent-enumbered (e.g., OCB) or are not parallelizableand therefore not apable of proessing data beyond about 2 Gbps in hardware with a singleproessing unit (e.g., CCM and EAX). Although CWC requires more hip area than OCB,our alulations suggest that the extra silion osts less than the intelletual property fees forthe patented modes. Furthermore, we remark that at least one standardization body (IEEE802.11) has rejeted patented-enumbered modes in favor of patent-free modes, suggesting thatthe demand for patent-free modes is very high.

www.manaraa.com

1 IntrodutionThere has reently been a thrust toward produing dediated blok ipher modes of operationapable of simultaneously enrypting and authentiating data. Suh modes of operation are oftenalled authentiated enryption (AE) modes or, if the modes are apable of authentiating moredata than they enrypt, authentiated enryption with assoiated data (AEAD) modes. Despite theprevious work in this area, however, there remains at least one area of de�ieny: of the previously-existing modes, none of the patent-free ones are apable of enrypting and authentiating data fasterthan about 2 Gbps in hardware. Yet future high-speed IPse network devies will be expeted toproess data at a rate of 10 Gbps.We address this de�ieny in this paper by presenting a patent-free and parallelizable AEADmode of operation (CWC) apable of enrypting and authentiating data at 10 Gbps using on-ventional ASIC tehnology. We do not, however, sari�e performane in software. In fat, inaddition to requiring high-performane in hardware, high-performane in software was an expliitdesign riterion. We also required that our mode be provably-seure, under the standard AEADnotion [16℄, assuming that the underlying blok ipher is a seure pseudorandom permutation,whih is a reasonable assumption if the underlying blok ipher is AES. Our resulting onstrutionhas other desirable properties as well. For example, it is lean and simple (in our opinion), anproess the data online (in the algorithmi sense), uses a single key (thereby avoiding expensivememory aesses in hardware), and allows for pre-proessing of assoiated data and other header�elds. Finding a patent-free solution that simultaneously satis�ed our hardware, software, andprovable-seurity goals proved to be one of our main hallenges; we believe that we have met thathallenge.Let us ontinue by elaborating on some of the motivations for CWC.Why do we want dediated authentiated enryption modes? The traditional approahto ahieving authentiated enryption is to ombine some standard enryption mode (e.g., CBCmode) with some standard message authentiation sheme (e.g., HMAC). This is known as thegeneri-omposition approah and was �rst formally explored in [1℄ and [10℄. Unfortunately, suhgeneri-omposition onstrutions are often ad ho and, as illustrated in [1℄ and [10℄, it is veryeasy to aidentally ombine seure enryption modes with seure MACs and still get inseureauthentiated enryption modes.One of the biggest advantages of dediated AEADmodes over generi-omposition AEADmodesis that dediated AEAD modes are not prone to suh aidental errors. That is, sine dediatedAEAD modes learly speify how to ahieve both privay and authentiity, there is no longer therisk of someone aidentally ombing a privay/enryption omponent with an authentiity/MAComponent in an inseure fashion. Furthermore, sine most appliations that require privay alsorequire integrity, it is logial to fous on tools apable of providing both servies simultaneously.There is thus great value in developing and standardizing dediated AEAD modes, as evidenedby a wealth of papers in this area [8, 5, 7, 17, 21, 16, 2℄.Patents. Pragmatially, patents are a major impediment to the standardization and wide-spreaddeployment of some of the modes presented in the above-mentioned papers. In partiular, threeindependent parties have applied for patents on single-pass authentiated enryption modes. It isnot our purpose to desribe the spei�s of these patent appliations (and, indeed, the spei�sare not ompletely known to the publi). Rather, we point out that the existene of these patentappliations makes many existing authentiated enryption modes less attrative, and thereforeless amenable to standardization and deployment. To exemplify this point, we note that althoughRogaway, Bellare, Blak, and Krovetz's OCB mode [17℄ is very eÆient and elegant, it was appar-1

www.manaraa.com

ently rejeted from the IEEE 802.11 wireless working group largely beause of the fat that it wasovered by patent appliations from multiple parties.What is needed? Noting the need for patent-free dediated AEAD modes, Whiting, Ferguson,and Housley proposed a patent-free AEAD mode alled CCM [21℄ whih, apparently beause ofits patent-free nature, has been adopted by the IEEE 802.11 working group. CCM was reentlyfollowed by another onstrution, alled EAX, by Bellare, Rogaway, and Wagner [2℄. Sine CCMand EAX are based on the generi-omposition approah (they both essentially ombine standardounter (CTR) mode enryption with variants of CBC-MAC message authentiation), CCM andEAX do not fall under the aforementioned patent appliations.There is, however, one signi�ant disadvantage with both CCM and EAX: the CCM and EAXenryption and deryption operations are not parallelizable. That is, although the CTR modeportions of CCM and EAX are learly parallelizable, their CBC-MAC portions are not. Paralleliz-ability is, however, very important. For example, without the ability to parallelize the enryptionproess, using urrent tehnology it does not seem possible to build a single hardware engine forCCM or EAX apable of enrypting beyond approximately 2 Gbps.1 Although 2 Gbps might beadequate for today's appliations, suh speeds will not be adequate for the oming 10 Gbps networkdevies.Therefore, there is a need for a patent-free dediated mode of operation apable of enryptingand authentiating data at 10 Gbps in hardware. One major motivating example is future IPsenetwork devies, whih may soon have to proess data at 10 Gbps.The CWC solution. We propose a general AEAD paradigm, alled CWC, that addresses all theaforementioned issues. Our preferred instantiation of CWC for 128-bit blok iphers is un-patented,provably-seure, parallelizable, and eÆient in both hardware and software. The parallelizabilityenables high-speed hardware implementations to enrypt at 10 Gbps when using AES.The general CWC paradigm is based on what is alled the \Enrypt-then-Authentiate generiomposition paradigm." In partiular, CWC essentially ombines a Carter-Wegman message au-thentiation sheme [20℄ with CTR mode enryption in an Enrypt-then-Authentiate manner.The general idea is as follows: given a pair of strings (A;M) and a none N as input, the CWCenapsulation algorithm enrypts M with CTR mode to get some intermediate iphertext �. Itthen uses a Carter-Wegman MAC and the none N to MAC the pair (A; �). If we let � denote theresulting MAC tag, then the output of the CWC enapsulation algorithm is the onatenation of� and � . CWC is designed to protet the privay of M and the integrity of both A and M . Wedefer the intriaies of our spei� onstrution to the body of this paper.Although based on the Enrypt-then-Authentiate generi omposition paradigm, CWC is not ageneri omposition onstrution; for example, for eÆieny reasons the CWC enryption and MAComponents share the same blok ipher key. This means, among other things, that we had to provethe seurity of CWC diretly, rather than invoke previous results about the generi ompositionparadigm. Additionally, beause of our performane goals, we developed a new, parallelizableCarter-Wegman MAC for use with our spei� CWC instantiation. We again stress that our designwas inuened by both our hardware and software goals and our provable-seurity goals (as wellas our patent-free requirement). For example, we rejeted designs that performed favorably insoftware but not in hardware, and we rejeted designs that were slightly more eÆient but thathad weaker provable-seurity bounds than we desired.The CWC instantiation for 128-bit blok iphers. Throughout the body of this paper1It is always possible to build two totally independent units and proess two pakets at a time, but this isdramatially more omplex, requiring twie the area, plus a load balaner.2

www.manaraa.com

we will fous on our instantiation of the CWC paradigm for 128-bit blok iphers.2 In partiular,we fous on CWC-AES, a CWC instantiation with AES as the underlying blok ipher. When ourresults apply to AES with with spei� key lengths, we shall state so expliitly. Instead of writingCWC-AES, we shall write CWC-BC or simply CWC when we mean the general CWC paradigminstantiated like CWC-AES but with any 128-bit blok ipher BC in plae of AES.Note the di�erene in font between CWC, the general paradigm, and CWC, our spei� proposal.Ahieving parallelism. Clearly the CTR mode portion of CWC is parallelizable. Furthermore,the ore of the Carter-Wegman MAC portion of CWC (a.k.a. the universal hashing portion ofCWC) an be made parallelizable. In the ase of CWC, the universal hashing step essentially worksby omputing Y1xn + Y2xn�1 + Y3xn�2 + Y4xn�3 + � � �+ Ynx+ Yn+1 mod 2127 � 1 :where Y1; : : : ; Yn are 96-bit integers and Yn+1 is a 127-bit integer orresponding to the pair (A; �)and x is an integer modulo the prime 2127 � 1. It is well-known that the omputation of thispolynomial is parallelizable. For example, if we have two engines available, we an rewrite theabove polynomial as�Y1ym + Y3ym�1 + � � �+ Yn�x+ �Y2ym + Y4ym�1 + � � �+ Yn+1� mod 2127 � 1 ;where y = x2 mod 2127 � 1, m = (n� 1)=2, and we assume for illustrative purposes that n is odd.We an then ompute both the left and the right portions of the above in parallel. Additionalparallelism an be ahieved by further splitting the original polynomial into j polynomials in y0 =xj mod 2127 � 1.Performane. Let (A;M) be some input to the CWC enapsulation algorithm (reall that A is theassoiated data and M is the message to enrypt). Assuming that the universal hashing subkey ismaintained aross invoations, enapsulating (A;M) takes djM j=128e+2 blok ipher invoations.The polynomial used in CWC's universal hashing step will have degree d = djAj=96e + djM j=96e.There are several ways to evaluate this polynomial (details in Setion 4). As noted above, we ouldevaluate it in parallel. Serially, assuming no preomputation, we ould evaluate this polynomialusing d 127x127-bit multiplies. As another example, assuming n preomputed powers of the hashsubkey, whih are heap to maintain in software for reasonable n, we ould evaluate the polynomialusing d�m 96x127-bit multiplies and m 127x127-bit multiplies, where m = d(d+ 1)=ne � 1.As noted before, it is possible to implement CWC-AES in hardware at 10 Gbps using onventionalASIC tehnology. Spei�ally, at 0.13 miron, it takes approximately 300 Kgates to reah 10 Gbpsthroughput. Table 1 relates the software performane, on a Pentium III, of CWC-AES to the twoother patent-free AEAD modes CCM and EAX. The implementations used to ompute Table 1were written in C by Brian Gladman [4℄ and all use 128-bit AES keys; the urrent CWC-AESimplementation does not use the above-mentioned preomputation approah for evaluating thepolynomial. Table 1 shows that the urrent implementations of the three modes have omparableperformane in software, the relative \best" depending on the OS/ompiler and the length of themessage. Using the above-mentioned preomputation approah and swithing to assembly, weantiipate reduing the ost of CWC's universal hashing step to around 8 pb, thereby signi�antlyimproving the performane of CWC-AES in software ompared to CCM-AES and EAX-AES (sinethe authentiation portions of CCM-AES and EAX-AES are limited by the speed of AES). Foromparison, Bernstein's related hash127, whih also evaluates a polynomial modulo 2127 � 1 but2If desired, it is possible to instantiate the general CWC paradigm with 64-bit blok iphers, although ertainlimitations (e.g., none size) apply to suh variants. We do not present a 64-bit CWC variant here sine we areprimarily onerned with new, high-speed systems using AES, not legay appliations.3

www.manaraa.com

Linux/g-3.2.2 Windows 2000/Visual Studio 6.0Payload message lengths (bytes) Payload message lengths (bytes)Mode 128 256 512 2048 8192 128 256 512 2048 8192CWC-AES 105.5 88.4 78.9 72.2 70.5 84.7 70.2 62.2 56.5 55.0CCM-AES 97.9 87.1 82.0 78.0 77.1 64.8 56.7 52.5 49.5 48.7EAX-AES 114.1 94.9 86.1 79.1 77.5 75.2 61.8 55.3 50.4 49.1Table 1: Software performane (in loks per byte) for the three patent-free dediated AEAD modeson a Pentium III. All implementations were in C and written by Brian Gladman [4℄ and use 128-bitAES keys. Values are averaged over 50 000 samples. Please see the text for additional informationand disussion.whose spei� struture makes it less attrative in hardware, runs around 4 pb on a Pentium IIIwhen written in assembly and using the preomputation approah.We do not laim that CWC-AES will be partiularly eÆient on low-end CPUs suh as 8-bitsmartards. However, our goal was not to develop an eÆient AEAD mode for suh low-endproessors. Rather, our goal was to develop a parallelizable and eÆient AEAD mode for 10 Gbpshardware and for modern CPUs.1.1 Bakground and related workThe notion of an authentiated enryption (AE) mode was formalized by Katz and Yung [8℄ andby Bellare and Namprempre [1℄ and the notion of an authentiated enryption with assoiated data(AEAD) mode was formalized by Rogaway [16℄. In [1, 10℄, Bellare{Namprempre and Krawzykexplored ways to ombine standard enryption modes with MACs to ahieve authentiated en-ryption. A number of dediated AE and AEAD modes also exist, inluding RPC [8℄, XCBC [5℄,IACBC [7℄, OCB [17℄, CCM [21℄, and EAX [2℄. Within the sope of dediated blok ipher-basedAEAD modes, CWC's losest relatives are CCM and EAX, whih also use two passes and are un-patented. From a broader perspetive, CWC is similar to the ombination of MGrew's UST [14℄and TMMH [13℄, where one of the main advantages of CWC over UST+TMMH is CWC's small keysize, whih an be a bottlenek for UST+TMMH in hardware at high speeds.Rogaway and Wagner reently released a ritique of CCM [18℄. For eah issue raised in [18℄, we�nd that we have already addressed the issue (e.g., we designed CWC to be on-line) or we disagreewith the issue (e.g., we feel that it is suÆient for new modes of operation to handle arbitraryotet-length, as opposed to arbitrary bit-length, messages3).The integrity portion of CWC builds on top of the Carter-Wegman universal hashing approah tomessage authentiation [20℄. Like Bernstein's hash127 [3℄, CWC's universal hash funtion evaluatesa polynomial over the integers modulo the prime 2127 � 1. One of the main di�erene betweenhash127 and CWC's universal hash funtion is that hash127 uses signed 32-bit oeÆients andCWC uses unsigned 96-bit oeÆients. See Remark 3.2 and Setion 4 for disussions on why wehose to use 96-bit oeÆients.In April 2003 we introdued an Internet-Draft, within the IRTF Crypto Forum Researh Group,speifying the CWC-AES mode of operation. The latest version of the Internet-Draft an be foundat http://www.zork.org/w or on the IETF website http://www.ietf.org.3Although we stress that, if desired, it is easy to modify CWC to handle arbitrary bit-length messages. SeeRemark 3.9. 4

www.manaraa.com

1.2 OutlineWe begin in Setion 2 with some preliminaries and then desribe the CWC mode of operation inSetion 3. In Setion 4 we disuss the performane of CWC and in Setion 5 we present our provable-seurity results for CWC. Appendix A ontains our intelletual property statement. Appendix Bpresents a summary of CWC's properties. Appendix C ontains the formal proofs of seurity forCWC, as well as a desription of our general CWC paradigm. Appendix D ontains test vetors.2 PreliminariesNotation. If x is a string then jxj denotes its length in bits (not otets). Let " denote the emptystring. If x and y are two equal-length strings, then x�y denotes the xor of x and y. If x and y arestrings, then xky denotes their onatenation. If N is a non-negative integer and l is an integer suhthat 0 � N < 2l, then tostr(N; l) denotes the enoding of N as an l-bit string in big-endian format.If x is a string, then toint(x) denotes the integer orresponding to string x in big-endian format (themost signi�ant bit is not interpreted as a sign bit). For example, toint(10000010) = 27 + 2 = 130.Let x y denote the assignment of y to x. If X is a set, let x $ X denote the proess of uniformlyseleting at random an element from X and assigning it to x. If f is a randomized algorithm, letx $ f(y) denote the proess of running f with input y and a uniformly seleted random tape.When we refer to the time of an algorithm or experiment in the provable seurity setion of thispaper, we inlude the size of the ode (in some �xed enoding). There is also an impliit big-Osurrounding all suh time referenes.Authentiated enryption modes with assoiated data. We use Rogaway's notion ofan authentiated enryption with assoiated data (AEAD) mode [16℄. An AEAD mode SE =(Ke; E ;D) onsists of three algorithms and is de�ned over some key spae KeySpSE , some none spaeNoneSpSE = f0; 1gn, n a positive integer, some assoiated data (header) spae AdSpSE � f0; 1g�,and some payload message spae MsgSpSE � f0; 1g�. We require that membership in MsgSpSE andAdSpSE an be eÆiently tested and that if M;M 0 are two strings suh that M 2 MsgSpSE andjM 0j = jM j, then M 0 2 MsgSpSE .The randomized key generation algorithm Ke returns a key K 2 KeySpSE ; we denote thisproess as K $ Ke. The deterministi enryption algorithm E takes as input a key K 2 KeySpSE ,a none N 2 NoneSpSE , a header (or assoiated data) A 2 AdSpSE , and a payload messageM 2 MsgSpSE , and returns a iphertext C 2 f0; 1g�; we denote this proess as C EN;AK (M) orC EK(N;A;M). The deterministi deryption algorithm D takes as input a key K 2 KeySpSE ,a none N 2 NoneSpSE , a header A 2 AdSpSE , and a string C 2 f0; 1g� and outputs a messageM 2 MsgSpSE or the speial symbol INVALID on error; we denote this proess as M DN;AK (C).We require that DN;AK (EN;AK (M)) = M for all K 2 KeySpSE , N 2 NoneSpSE , A 2 AdSpSE , andM 2 MsgSpSE . Let l(�) denote the length funtion of SE ; i.e., for all keys K, nones N , headers A,and messages M , jEN;AK (M)j = l(jM j).Under the orret usage of an AEAD mode, after a random key is seleted, the appliationshould never invoke the enryption algorithm twie with the same none value until a new key israndomly seleted. In order to ensure that a none does not repeat, implementations typially usenones that ontain ounters. We use the notion of a none, rather than simply a ounter, beausethe notion of a none is more general and allows the developer the freedom to struture the noneas he or she desires.Blok iphers. A blok ipher E : f0; 1gk � f0; 1gL ! f0; 1gL is a funtion from k-bit keys andL-bit bloks to L-bit bloks. We use EK(�), K 2 f0; 1gk, to denote the funtion E(K; �) and we5

www.manaraa.com

use f $ E as short hand for K $ f0; 1gk ; f EK . Blok iphers are families of permutations;namely, for eah key K 2 f0; 1gk, EK is a permutation on f0; 1gL. We all k the key length of Eand we all L the blok length.3 The CWC mode of operationWe now desribe the CWC mode of operation for 128-bit blok iphers. See Appendix C for adesription of the general CWC onstrution.If BC denotes a blok ipher with 128-bit bloks and kl-bit keys, and if tl � 128 is the desiredtag length for CWC in bits, then let CWC-BC-tl denote the CWC mode of operation instantiatedwith BC using tag length tl. Throughout the remainder of this setion, �x BC and tl and letCWC-BC-tl = (K;CWC-ENC;CWC-DEC).We assoiate to CWC-BC-tl the following sets:MsgSpCWC-BC-tl = f x 2 (f0; 1g8)� : jxj � MaxMsgLen gAdSpCWC-BC-tl = f x 2 (f0; 1g8)� : jxj � MaxAdLen gKeySpCWC-BC-tl = f0; 1gklNoneSpCWC-BC-tl = f0; 1g88where MaxMsgLen and MaxAdLen are both 128 � (232�1). That is, the payload and assoiated dataspaes for CWC-BC-tl onsist of all strings of otets that are at most 232 � 1 bloks long.3.1 The CWC oreThe key generation algorithm K returns a randomly seleted key from KeySpCWC-BC-tl (i.e., the keygeneration returns a random kl-bit string). The enryption algorithm CWC-ENC works as follows:Algorithm CWC-ENCK(N;A;M) // CWC enryption� CWC-CTRK(N;M)� CWC-MACK(N;A; �)Return �k�where CWC-CTR and CWC-MAC are desribed in Setion 3.2. The deryption algorithm CWC-DECworks as follows:Algorithm CWC-DECK(N;A;C) // CWC deryptionIf jCj < tl then return INVALIDParse C as �k� where j� j = tlIf A 62 AdSpCWC-BC-tl or � 62 MsgSpCWC-BC-tl then return INVALIDIf � 6= CWC-MACK(N;A; �) then return INVALIDReturn CWC-CTRK(N;�)3.2 The CWC subroutinesThe remaining CWC algorithms are de�ned as follows:Algorithm CWC-CTRK(N;M) // CWC ounter mode module� djM j=128eFor i = 1 to � do 6

www.manaraa.com

ksi BCK(107kNktostr(i; 32)) // Note that 107 means a one bit followed by 7 zeros� (�rst jM j bits of ks1kks2k � � � kks�)�MReturn �Algorithm CWC-MACK(N;A; �) // CWC authentiation moduleR BCK(CWC-HASHK(A; �))� BCK(107kNk032)�RReturn �rst tl bits of �Algorithm CWC-HASHK(A; �) // CWC universal hashing moduleZ last 127 bits of BCK(110126)Kh toint(Z) // The same Kh value is used in every invoation of CWC-HASHK .l minimum integer suh that 96 divides Ak0ll0 minimum integer suh that 96 divides �k0l0X Ak0lk�k0l0 ; � jXj=96 ; l� j�j=8 ; lA jAj=8Break X into hunks X1;X2; : : : ;X� // jX1j = jX2j = � � � = jX� j = 96For i = 1 to � doYi toint(Xi)Y�+1 264 � lA + l� // Inlude the lengths of A and � in the polynomial.R Y1K�h + � � �+ Y�Kh + Y�+1 mod 2127 � 1Return tostr(R; 128) // Note: �rst bit of result will always be 03.3 RemarksWe now highlight some features of CWC, explain some of our design deisions, and disuss some ofthe alternatives we explored. We have additional remarks in Setion 5.4.Remark 3.1 [Computing the CWC-HASH polynomial.℄ The polynomialY1K�h + � � �+ Y�Kh + Y�+1 mod 2127 � 1in CWC-HASH an be omputed using Horner's Rule as((((Y1)Kh + Y2)Kh + � � �)Kh + Y�)Kh + Y�+1 mod 2127 � 1 :Alternatively, if the values Kih are preomputed, the polynomial an be omputed diretly.Furthermore, as disussed in the introdution, omputation of the polynomial in CWC-HASHan be parallelized by splitting the polynomial into multiple polynomials in Kih for some i.As we will see in Setion 4, di�erent implementations will want to evaluate the polynomial indi�erent ways. For example, in software it is advantageous to preompute the powers of the Kh andevaluate the polynomial diretly. To avoid unneessary memory aesses, hardware implementationswill likely evaluate the polynomial using Horner's rule (perhaps by �rst splitting the polynomial inorder to exploit CWC-HASH's parallelism).Remark 3.2 [On the size of the CWC-HASH oeÆients.℄ All the oeÆients Y1; : : : ; Y�in CWC-HASH are 96-bit integers. When evaluating the polynomial using preomputed powersof Kh, the ost for eah oeÆient inludes the ost of a 96x127-bit multiply. When evaluatingthe polynomial using Horner's rule, the ost for eah oeÆient inludes the ost of a 127x127-bitmultiply (sine the aumulated value will be 127 bits long). (See Remark 5.4 for why we hosenot to use 96-bit hash subkeys and, partiularly relevant here, the fat that when we split thepolynomial and evaluate two polynomials in Kih, i � 2, Kih will likely be 127 bits long even if Kh is7

www.manaraa.com

96 bits). Sine we are are already performing 127x127-bit multiplies, to inrease the performanewhen using Horner's rule it would easily be possible to de�ne CWC to use oeÆients up to 126-bitsin size. Suh an approah would speed up the Horner's rule omputation by a ratio of 126/96(nearly 4:3), but would require onsiderable additional omplexity to perform bit and byte shiftingwithin the oeÆients. Note that Bernstein's related hash127 [3℄ uses smaller 32-bit oeÆients,whih makes it more ostly in hardware when evaluating the polynomial using Horner's rule, butheaper in software when using preomputed powers of the hash subkey. We use 96-bit oeÆientsbeause it provides for fast hardware implementations (using Horner's rule) and fast (althoughnot as fast as hash127) software implementation when using preomputation. See Setion 4 foradditional disussion. (Finally, the �nal Y�+1 may be larger than 96-bits sine Y�+1 does not haveto be multiplied with anything.)Remark 3.3 [Why a single key.℄ It would be perfetly aeptable from a seurity perspetive tomake the blok ipher key K and hash key Kh independent. The main motivation for using a singlekey, and deriving the hash key Kh from the blok ipher key K, was simpliity of key management.From a performane perspetive, we note that fething key material an be a bottlenek in high-speed hardware.Remark 3.4 [Separating blok ipher inputs.℄ The input to the blok ipher when generatingthe hash key Kh begins with the bits 11. All the inputs when generating CTR mode keystreambegin with the bits 10. The input to the keystream generator in CWC-MAC has the last 32 bits allzero and the input to the blok ipher in CWC-CTR never has the last 32 bits zero. All the outputsof CWC-HASH begin with a 0 bit. These properties ensure that there is never an overlap in theinputs between the di�erent uses of the underlying blok ipher. For example, the output of theuniversal hash funtion (whih is eniphered with the blok ipher) will never ollide with one ofthe inputs to the blok ipher in CWC-CTR. Essentially, separating the blok ipher inputs in thisway is what allows us to use a single blok ipher key in all appliations of the blok ipher.Remark 3.5 [Why not derive multiple keys from a single key?℄ It would be possibleto de�ne a mode of operation that takes a single master key and that derives \independent"enryption and MAC blok ipher keys from the master key. Doing so would eliminate the need tobe areful about separating inputs to the blok ipher (Remark 3.4), but would require additionalomputations (most likely blok ipher invoations) to derive the enryption and MAC keys ifimplementations only store the master in memory. Furthermore, unless implementations store theexpanded keys in memory, there would be the additional ost of expanding the key shedules forthe derived enryption and MAC keys. Sine we an provably use the same blok ipher key for allappliations of the underlying blok ipher (Remark 3.4 and Setion 5), sine our solution avoidsunneessary preomputation steps, and sine we believe our solution is still lean and simple, wehose not to derive \independent" enryption and MAC blok ipher keys from a single master key.Remark 3.6 [Computing the universal hash subkey.℄ Although CWC-HASH shows the hashsubkeyKh being omputed upon every invoation, it is possible to omputeKh in the key generationstep of CWC. Doing so would save one blok ipher appliation per message but would requiremaintaining an additional 128 bits aross invoations. We antiipate that in hardware, wherefething key material an be expensive, the hash subkey will be re-omputed on every invoationof the enryption and deryption algorithms. In software, however, we antiipate that the subkeyKh will be omputed one and maintained aross invoations.8

www.manaraa.com

Remark 3.7 [On the hoie of parameters.℄ The parameters (e.g., the none length and theway the none is enoded in the input to the blok ipher) are �xed for CWC. This is in order topromote interoperability. In CWC the blok ounter length is set to 32 bits in order to allow CWCto be used with IPse jumbograms and other large pakets up to 232 � 1 bloks long. The nonelength is set to 88 bits in order to handle future IPse sequene numbers.Remark 3.8 [Byte ordering.℄ CWC uses big-endian byte ordering. We do so for onsistenypurposes and in order to maintain ompatibility with MGrew's ICM Internet-Draft [12℄ and theIETF, whih strongly favors the big-endian byte-ordering.Remark 3.9 [Handling arbitrary bit-length messages.℄ Although we ould have spei�edCWC to take arbitrary bit-length messages as input (just hange the de�nitions of the messagespaes and ompute lA jAj and l� j�j in CWC-HASH), we do not speify CWC this way simplybeause there does not appear to be a signi�ant need to handle arbitrary bit-length messages andwe do not onsider it a good trade-o� to de�ne a mode for arbitrary bit-length messages at theexpense of otet-oriented systems.If, in the future, suh a need arises, it will still be possible to modify the urrent CWC onstru-tion to take arbitrary bit-length messages as input without a�eting interoperability with existingCWC implementations when otet-strings are ommuniated. Although other possibilities exist,one method would be to augment the omputation of Y�+1 in CWC-HASH as follows:rA jAj mod 8 ; r� j�j mod 8 ; Y�+1 2120 � rA + 2112 � r� + 264 � lA + l� :Remark 3.10 [64-bit blok iphers.℄ It is possible to instantiate the general CWC paradigm(Appendix C) with 64-bit blok iphers like DES and 3DES. We do not do so in this paper sinewe are targeting future high-speed ryptographi appliations.Remark 3.11 [Initial ounter for CTR-mode.℄ Motivated by EAX2 [2℄, one possible alter-native to CWC might be to use BCK(11105kN) both as the value to enrypt R in CWC-MAC andas the initial ounter to CTR mode-enrypt M (with the �rst two bits of the ounter always setto 10). Other EAX2-motivated onstrutions also exist. For example, the tag might be set toBCK(h(X0kN))�BCK(h(X1kA))�BCK(h(X2k�)), where X0;X1;X2 are strings, none of whih isa pre�x of the other, and h is a parallelizable universal hash funtion, like CWC-HASH but hashingonly single strings (as opposed to pairs of strings). Compared to CWC, these alternatives have theability to take longer nones as input, and, from a funtional perspetive, an be applied to stringsup to 2126 bloks long. But we do not view this as a reason to prefer these alternatives over CWC.From a pratial perspetive, we do not foresee appliations needing nones longer than 11 otets,or needing to enrypt messages longer than 232 � 1 bloks. Moreover, from a seurity perspetive,appliations should not enrypt too many pakets between rekeyings, implying that even 11 otetnones are more than suÆient.4 Performane4.1 HardwareSine one of our main goals is to ahieve 10 Gbps in hardware, and in partiular for future high-speed IPse network devies, let us fous �rst on hardware osts. As noted in the introdution, using0.13 miron CMOS ASIC tehnology, it should take approximately 300 Kgates to ahieve 10 Gbpsthroughput for CWC-AES. This estimate, whih is appliable to AES with all key lengths, inludes9

www.manaraa.com

four AES ounter-mode enryption engines, eah running at 200 MHz and requiring about 25Kgateseah. In addition, there are two 32x128-bit multiply/aumulate engines, eah running at 200 MHzwith a lateny of four loks, one eah for the even and odd polynomial oeÆients. Of ourse,simply keeping these engines \fed" may be quite a feat in itself, but that is generally true of any 10Gbps path. Also, there may well be better methods to struture an implementation, depending onthe partiular ASIC vendor library and tehnology, but, regardless of the implementation strategy,10 Gbps is quite ahievable beause of the inherent parallelism of CWC.Sine OCB is CWC's main ompetitor for high-speed environments, it is worth omparing CWCwith OCB instantiated with AES (we do not ompare CWC with CCM and EAX here sine thelatter two are not parallelizable). We �rst note that CWC-AES saves some gates beause we onlyhave to implement AES enryption in hardware. However, at 10 Gbps, OCB still probably requiresonly about half the silion area of CWC-AES. The main question for many hardware designers isthus whether the extra silion area for CWC-AES osts more than three royalty payments, as well asnegotiation osts and overhead. Our estimates indiate that, given today's silion osts, the extrasilion for CWC-AES is probably heaper than the IP fees for OCB.4.2 SoftwareCWC-AES an also be implemented eÆiently in software. Table 1 shows timing information forCWC-AES, as well as CCM-AES and EAX-AES, on a 1.133GHz mobile Pentium III dual-bootingRedHat Linux 9 (kernel 2.4.20-8) and Windows 2000 SP2. The numbers in the table are the loksper byte for di�erent message lengths averaged over 50 000 runs and inlude the entire time forsetting up (e.g., expanding the AES key-shedule) and enrypting. All implementations were in Cand written by Brian Gladman [4℄ and use 128-bit AES keys. The Linux ompiler was g version3.2.2; the Windows ompiler was Visual Studio 6.0.From Table 1 we onlude that the three patent-free modes, as urrently implemented by Glad-man, share similar software performanes. The \best" performing one appears to depend onOS/ompiler and the length of the message being proessed. On Linux, it appears that CWC-AESperforms slightly better than EAX-AES for all message lengths that we tested, and better thanCCM-AES for the longer messages, whereas Gladman's CCM-AES and EAX-AES implementationsslightly outperform his CWC-AES implementation on Windows for all the message lengths that wetested.Note, however, that all the implementations used to ompute Table 1 were written in C. Fur-thermore, the urrent CWC-AES ode does not make use of all of the optimization tehniques (andin partiular preomputation) that we desribe below. By swithing to assembly and using theadditional optimization tehniques, we antiipate the speed for CWC-HASH to drop to better than8 loks per byte, whereas the speed for the CBC-MAC portion of CCM-AES and EAX-AES willbe limited by the speed of AES (the best reported speed for AES on a Pentium III is 14.1 pb,due to a proprietary library by Helger Lipmaa; Gladman's free hand-optimized Windows assemblyimplementation runs at 17.5 pb [11℄). Returning to the speed of CWC-HASH, for referene wenote that Bernstein's related hash127 [3℄ runs around 4 pb on a Pentium III when written inassembly and using the preomputation approah. Bernstein's hash127 also works by evaluatinga polynomial modulo 2127 � 1; the main di�erene is that the oeÆients for hash127 are 32 bitslong, whereas the oeÆients for CWC-HASH are 96 bits long (reall Remark 3.2, whih disusseswhy we use 96-bit oeÆients).
10

www.manaraa.com

4.2.1 Implementing CWC-HASH in softwareSine the implementation of CWC-HASH is more ompliated than the implementation of theCWC-CTR portion of CWC, we devote the rest of this setion to disussing CWC-HASH.Preomputation. As noted in Remark 3.1, there are two general approahes to implementingCWC-HASH in software. The �rst is to use Horner's rule. The seond is to evaluate the polynomialdiretly, whih an be faster if one preomputes powers of the hash key Kh at setup time (here thepowers of Kh an be viewed as an expanded key-shedule). In partiular, as noted in Remark 3.2,evaluating the polynomial using Horner's rule requires a 127x127-bit multiply for eah oeÆient,whereas evaluating the polynomial diretly using preomputed powers of Kh requires a 96x127-bitmultiply for eah oeÆient.4 The advantage with preomputation was �rst observed by Bernsteinin the ontext of hash127 [3℄.The above desription of the preomputation approah assumed that if the polynomial isY1K�1h + � � � + Y�1Kh + Y (i.e., the polynomial has oeÆients), then we had preomputedthe powers of Kih for all i 2 f1; : : : ; � 1g. The preomputation approah extends naturally to thease where we have preomputed the powers Kjh, j 2 f1; : : : ; ng, for some n � �1. For simpliity,�rst assume that we know the polynomial has a multiple of n oeÆients. For suh a polynomial,one proesses the �rst n oeÆients (to get Y1Kn�1h + : : :+ Yn�1Kh + Yn), then multiplies the in-termediate result by Knh (to get Y1K2n�1h + : : :+Yn�1Kn+1h +YnKnh). After that, one an ontinueproessing data with the same preomputed values (to get Y1K2n�1h + : : :+Y2n�1Kh+Y2n), and soon. Note that eah hunk of n oeÆients takes (n� 1) 96x127-bit multiplies, and all but the lasthunk takes an additional 127x127-bit multiply. Now assume that the number of oeÆients m inthe polynomial is not neessarily a multiple of n. If m is known in advane, one ould �rst proessm mod n oeÆients, multiply by Knh , then proess in n-oeÆient hunks as before. Alternately,as long as the end of the message is known n oeÆients in advane, one ould proess n-oeÆientshunks, and then �nish o� the �nal m mod n oeÆients using Horner's rule. Or, if the number ofoeÆients in the polynomial is not known until the �nal oeÆient is reahed, one ould proessthe message in n-oeÆient hunks and then multiply by a preomputed power of K�1h one theend of the message hash been reahed.Naturally, preomputation requires extra memory, but that is usually heap and plentiful ina software-based environment. Using 32-bit multiplies, the preomputation approah requires 1232-bit multiplies per 96-bit oeÆient, as well as 17 adds, all of whih may arry. In assembly, mostof these arry operations an be implemented for free, or lose to it by using a speial variant ofthe add instrution that adds in the operand as well as the value of the arry from the previousadd operation. But when implemented in C, they will generally ompile to ode that requiresa onditional branh and an extra addition. An implementation using Horner's rule requires anadditional four multiplies and three additions with arry per oeÆient, adding about 33% overhead,sine the multiplies dominate the additions. A 64-bit platform only requires four multiplies andfour adds (whih may all arry), no matter the implementation strategy taken. The multiply beingfar more expensive than other operations, we would thus expet a 64-bit integer implementation torun in one third the time of a 32-bit implementation, assuming that the ost of primitive operationsdoes not inrease.Exploiting the parallelism of some instrution sets. On most platforms, it turns out thatthe integer exeution unit is not the fastest way to implement CWC-HASH. Many platforms havemultimedia instrutions that an be used to speed up the implementation. As another alternative,4As an aside, see Remark 5.4 for why we did not make the hash subkey 96-bits, whih ould have sped up a serialHorner's rule implementation. 11

www.manaraa.com

Bernstein demonstrated that, on most platforms, the oating point unit an be used to implementthis lass of universal hash funtions far more eÆiently than an be done in the integer unit. Thisis partiularly true on the x86 platform where, in ontrast to using the standard registers, twooating point multiples an be started in lose proximity without introduing a pipeline stall. Thatis, the x86 an e�etively perform two oating-point operations in parallel. The disadvantage ofusing oating-point registers is that the operands for the individual multiplies need to be small,so that the operations an be done without loss of preision. On the x86, Bernstein multiplies24-bit values, allowing the sums of produt terms to �t into double preision values with 53 bitsof preision without loss of information. Bernstein details many ways to optimize this sort ofalulation in [3℄.As noted before, there are only two main di�erenes between the struture of the polynomials ofBernstein's hash127 and CWC-HASH. The �rst is that Bernstein uses signed oeÆients, whereasCWC-HASH uses unsigned oeÆients; this should not have an impat on eÆieny. The other dif-ferene is that Bernstein uses 32-bit oeÆients, whereas CWC-HASH uses 96-bit oeÆients. Whileboth solutions average one multipliation per byte when using integer math, Bernstein's solutionrequires only .75 additions per byte, whereas CWC-HASH requires 1.42 additions per byte, nearlytwie as many. Using 32-bit multiplies to build a 96x127 multiplier (assuming preomputation),CWC-HASH should therefore perform no worse than at half the speed of hash127. When using 24-bit oating point oeÆients to build a multiply (without applying any non-obvious optimizations),hash127 requires 12 multiplies and 16 adds per 32-bit word. CWC an get by with 8 multiples perword and 12.67 additions per word. This is beause a 96-bit oeÆient �ts exatly into four 24-bitvalues, meaning we an use a 6x4 multiply for every three words. With 32-bit oeÆients, we needto use two 24-bit values to represent eah oeÆient, resulting in a single 6x2 multiply that needsto be performed for eah word.Gladman's implementation of CWC-HASH uses oating point arithmeti, but uses Horner'srule instead of performing preomputation to ahieve extra speed. Nothing about the CWC hashindiates that it should run any worse than half the speed of hash127, if implemented in a similarmanner, in assembly, and using the oating point registers and preomputation. This upper-boundpaints an enouraging piture for CWC performane, beause hash127 on a Pentium III runs around4 pb when implemented in assembly and using the oating point registers and preomputation.This indiates that a well-optimized software version of CWC-HASH should run no slower than 8yles per byte.Finally, it may be possible to further improve the performane of CWC-HASH. For example,literature from the gaming ommunity [6℄ indiates that one an use both integer and oating pointregisters in parallel. Although we have not tested this approah, it seems reasonable to onludethat one might be able to interleave integer operations, and thereby obtain additional speedups.5 Theorem statementsIn addition to parallelizability and performane, provable-seurity was one of our major designrequirements (we rejeted several onstrutions that had weaker provable-seurity results than wedesired). Consequently, the CWC mode is a provably seure AEAD mode assuming that the under-lying blok ipher (e.g., AES) is a seure pseudorandom permutation. This is a quite reasonableassumption sine most modern blok iphers (inluding AES) are believed to be pseudorandom.Furthermore, all provably-seure blok ipher modes of operation that we are aware of make thesame assumptions we make (and some modes, e.g. OCB [17℄, make even stronger, albeit still rea-sonable, assumptions). 12

www.manaraa.com

The spei� results for CWC appear as Theorem 5.1 and Theorem 5.2 below. In Appendix Cwe also present results for the general CWC paradigm, from whih Theorems 5.1 and 5.2 follow.5.1 PreliminariesBefore presenting our provable seurity results, we must �rst formally desribe what we meanby privay and integrity/authentiity. Our privay and integrity/authentiity notions for AEADmodes ome from [17℄. We must also desribe the notion of a pseudorandom permutation.Privay of AEAD modes. Let SE = (Ke; E ;D) be an AEAD mode with length funtion l(�).Let $(�; �; �) be an orale that, on input (N;A;M) 2 NoneSpSE � AdSpSE � MsgSpSE , returns arandom string of length l(jM j). Let B be an adversary with aess to an orale and that returns abit. Then AdvprivSE (B) = Pr hK $ Ke : BEK(�;�;�) = 1 i� Pr hB$(�;�;�) = 1 iis the ind$-pa-advantage of B in breaking the privay of SE under hosen-plaintext attaks; i.e.,AdvprivSE (B) is the advantage of B in distinguishing between iphertexts from EK(�; �; �) and randomstrings. An adversary B is none-respeting if it never queries its orale with the same none twie.Intuitively, a mode SE preserves privay under hosen plaintext attaks if the ind$-pa-advantageof all none-respeting adversaries using reasonable resoures is small.Integrity/authentiity of AEAD modes. Let SE = (Ke; E ;D) be an AEAD mode. Let Fbe a forging adversary and onsider an experiment in whih we �rst pik a random key K $ Keand then run F with orale aess to EK(�; �; �). We say that F forges if F returns a pair (N;A;C)suh that DN;AK (C) 6= INVALID but F did not make a query (N;A;M) to EK(�; �; �) that resulted ina response C. Then AdvauthSE (F) = Pr hK $ Ke : F EK(�;�;�) forges iis the auth-advantage of F in breaking the integrity/authentiity of SE . Intuitively, the modeSE preserves integrity/authentiity if the auth-advantage of all none-respeting adversaries usingreasonable resoures is small.Pseudorandom permutations. If X is a set, then Perm(X) denotes the set of all permutationson X. If L is a positive integer, then and Perm(L) denotes the set of all permutations on f0; 1gL.Let F be a a family of funtions from set D to D. Let A be an adversary with aess to an oraleand that returns a bit. ThenAdvprpF (A) = Pr h f $ F : Af(�) = 1 i� Pr h g $ Perm(D) : Ag(�) = 1 idenotes the prp-advantage of A in distinguishing a random instane of F from a random permu-tation. Intuitively, we say that F is a seure prp if the prp-advantages of all adversaries usingreasonable resoures is small. Modern blok iphers, suh as AES, are believed to be seure prps.5.2 Integrity/authentiityTheorem 5.1 [Integrity/authentiity of CWC.℄ Let CWC-BC-tl be as in Setion 3. (Reallthat BC is a 128-bit blok ipher and that the tag length tl is � 128.) Consider a none-respetingauth adversary A against CWC-BC-tl. Assume the exeution environment allows A to query itsorale with assoiated data that are at most n � MaxAdLen bits long and with messages that areat most m � MaxMsgLen bits long. Assume A makes at most q � 1 orale queries and the totallength of all the payload data (both in these q � 1 orale queries and the forgery attempt) is at13

www.manaraa.com

most �. Then given A we an onstrut a prp adversary CA against BC suh thatAdvauthCWC-BC-tl(A) � AdvprpBC (CA) + (�=128 + 3q + 1)22129 + n+m2133 + 12125 + 12tl : (1)Furthermore, the experiment for CA takes the same time as the experiment for A and CA makesat most �=128 + 3q + 1 orale queries.The above theorem means that if the underlying blok ipher is a seure pseudorandom permu-tation, then CWC-BC will preserve authentiity. If the underlying blok ipher is something likeAES, then this initial assumption seems quite reasonable and, therefore, CWC-AES will preserveauthentiity.Let us elaborate on why Theorem 5.1 implies that CWC-BC will preserve authentiity. AssumeBC is a seure blok ipher. This means that AdvprpBC (C) must be small for all adversaries Cusing reasonable reasonable resoures and, in partiular, this means that, for CA as desribed inthe theorem statement, AdvprpBC (CA) must be small assuming that A uses reasonable resoures.And if AdvprpBC (CA) is small and �; q;m and n are small, then, beause of the above equations,AdvauthCWC-BC-tl(A) must also be small as well. I.e., any adversary A using reasonable resoures willonly be able to break the authentiity of CWC-BC-tl with some small probability.Let us onsider some onrete examples. Let n = MaxAdLen and m = MaxMsgLen, whih is themaximum possible allowed by the CWC-BC onstrution. Then Equation 1 beomesAdvauthCWC-BC-tl(A) � AdvprpBC (CA) + (�=128 + 3q + 1)22129 + 1293 + 12tl :If we limit the number of appliations of CWC-BC between rekeyings to some reasonable value suhas q = 232, if we limit the total number of payload bits between rekeyings to � = 250, and if wetake tl � 43, then the above equation beomesAdvauthCWC-BC-tl(A) � AdvprpBC (CA) + 1241whih means that, assuming that the underlying blok ipher is a seure prp, an attaker will notbe able to break the unforgeability of CWC-BC-tl with probability muh greater than 2�41.5.3 PrivayTheorem 5.2 [Privay of CWC.℄ Let CWC-BC-tl be as in Setion 3. Then given a none-respeting ind$-pa adversary A against CWC-BC-tl one an onstrut a prp adversary CA againstBC suh that if A makes at most q orale queries totaling at most � bits of payload message data,then AdvprivCWC-BC-tl(A) � AdvprpBC (CA) + (�=128 + 3q + 1)22129 : (2)Furthermore, the experiment for CA takes the same time as the experiment for A and CA makesat most �=128 + 3q + 1 orale queries.We interpret Theorem 5.2 in the same way we interpreted Theorem 5.1. In partiular, this theoremshows that if BC is a seure pseudorandom permutation, then CWC-BC-tl preserves privay underhosen-plaintext attaks.As a onrete example of why Theorem 5.2 implies that CWC-BC preserves privay underhosen-plaintext attaks, let us again onsider the ase where q = 232 and � = 250. Then Equation 2beomes AdvprivCWC-BC-tl(A) � AdvprpBC (CA) + 124214

www.manaraa.com

whih means that, assuming that the underlying blok ipher is a seure prp, an attaker will notbe able to break the privay of CWC-BC-tl with advantage muh greater than 2�42.Remark 5.3 [Chosen-iphertext privay.℄ Sine CWC-BC-tl preserves privay under hosen-plaintext attaks (Theorem 5.2) and provides integrity (Theorem 5.1) assuming that BC is a seurepseudorandom permutation, it also provides privay under hosen-iphertext attaks under thesame assumption about BC. See [1, 16℄ for a disussion of the relationship between hosen-plaintextprivay, integrity, and hosen-iphertext privay; this relationship was also used, for example, bythe designers of OCB [17℄.5.4 RemarksWe lose this setion with some additional remarks on the design of CWC and several additionalvariants that we onsidered.Remark 5.4 [On the length of the hash subkey.℄ It is possible to use smaller subkeys Khin CWC-HASH (simply trunate BCK(110126) appropriately). Reall that we have �xed the bloklength of BC to 128 bits. Let hkl denote the length of the hash subkey in an altered onstrution.If hkl < 127, then the upper-bound in Equation 1 beomesAdvprpBC (CA) + (�=128 + 3q + 1)22129 + (n+m)=96 + 22hkl + 12tl :Consider an appliation that sets hkl to 96. If we replae m and n by their maximum possiblevalues, the upper-bound beomesAdvprpBC (CA) + (�=128 + 3q + 1)22129 + 1262 + 12tl :Sine 2�62 is already very small (and, in fat, dominated by the (�=128 + 3q + 1)2 � 2�129 termfor some reasonable values of q and �), from a provable-seurity perspetive, developers would bejusti�ed in using 96-bit hash subkeys.Rather than use shorter hash subkeys, however, our urrent CWC instantiation in Setion 3uses 127-bit hash subkeys. We do so for several reasons. First, in hardware, to obtain maximumspeed, one would parallelize the CWC hash funtion by evaluating, for example, two polynomialsin K2h in parallel. Sine K2h would generally not be 96-bits long, there is no performane advantagewith using 96-bit subkeys Kh in this situation. In software, the use of 96-bit hash subkeys ouldlead to improved performane when evaluating the polynomial using Horner's rule. However, theperformane of suh a onstrution is essentially equivalent to the performane of the urrentonstrut when not using Horner's rule but using pre-omputed powers of Kh. Sine we believethat high-performane implementations will not bene�t from the use of 96-bit hash subkeys (i.e.,the additional 31 key bits ome with no or negligible additional ost), we have hosen to �x thelength of our hash subkeys to 127 bits.Developers of CWC derivatives may, however, wish to use shorter hash subkeys, and we donot prevent that (although we do suggest referring to suh modes in suh a way as to avoidonfusion with CWC-BC). We also suggest that developer's understand the impat of using shorterhash subkeys. For example, using a 64-bit hash subkey would inrease the upper-bound on theprobability of an adversary forging to around 2�30, whih may be too large for some appliations.Remark 5.5 [On omputing the tag.℄ In CWC the MAC onsisted of hashing (A; �), enipher-ing the hash with the blok ipher, and then xoring the result with some keystream (i.e., in theurrent proposal the tag is BCK(107kNk032)�BCK(CWC-HASHK(A; �))). One question the reader15

www.manaraa.com

might have is whether two blok ipher invoations are neessary. We �rst omment that the ostof two blok ipher operations per MAC is not partiularly signi�ant ompared to the total ostof CWC. CWC-AES as urrently spei�ed already ahieves its design goal of enrypting 10 Gbps inhardware. And, in software, the extra ost of one blok ipher operation is quite minor for averagepakets, and less than approximately 15% for 64-byte pakets. Nevertheless, the use of two blokipher appliations for the tag might seem aesthetially unappealing to some.Instead of the two blok ipher appliations, one ould use BCK(h0K(N;A; �)) as the tag, whereh0 is a modi�ed version of CWC-HASH designed to hash 3-tuples instead of pairs of strings (this isimportant beause the none must also be authentiated). The main disadvantage of this approahis that it would hange the upper-bound in Equation 1 toAdvprpBC (CA) + (�=128 + 3q + 1)22129 + q2 ��n+m2133 + 12125�+ 12tl(note the new q2 term). If we set n = MaxAdLen, m = MaxMsgLen, q = 232, and � = 250, thenfor any tl � 29, we get that the advantage of an adversary in breaking the unforgeability of thismodi�ed CWC variant is upper-bounded by 2�27, whih, although not extremely large, is worsethan the upper-bound of 2�41 we get using Equation 1. Even if n and m are at most one millionbloks long, we see that the integrity upper-bound for the altered CWC onstrution is worsethan the upper-bound for the CWC onstrution we present in Setion 3. More generally, thismeans that for reasonable values of n;m; q; �, the inseurity upper-bounds of this alternative willbe worse than the inseurity upper-bounds of the CWC mode desribed in Setion 3. Furthermore,the upper-bound would be even worse if one keys the hash funtion with shorter keys, whih somedevelopers might hoose to do (reall Remark 5.4).Another possible way to redue the number of blok ipher invoations neessary to omputethe MAC would be to take the output of the urrent hash funtion and run it through anotherhash funtion that is almost-xor-universal (see Appendix C for a desription of this property).However, this approah is not attrative beause it requires additional key material. In partiular,while this approah may save one blok ipher operation, in hardware the blok ipher operationis atually smaller and simpler than managing the extra key material, given that the hardwarealready has a blok ipher enryptor running at high speed.Another possibility would be to use something like BCK(N) + Y1K�+2h + � � �+ Y�K3h + lAK2h +l�Kh mod 2127 � 1, enoded as a 127-bit string and trunated to tl bits, as the MAC (here BCK(N)is interpreted as an integer). Doing so would, however, result in a new integrity upper-boundAdvprpBC (CA) + (�=128 + 2q + 1)2 + 4q + 42129 + (n+m)=96 + 52tl :If we take n and m to be MaxAdLen and MaxMsgLen, respetively, then the upper-bound beomesAdvprpBC (CA) + (�=128 + 2q + 1)2 + 4q + 42129 + 2342tl :Compared to Equation 1, we see the presene of a 234�tl term. This means that, in some situations,when using the above upper-bound as a guide for parameter seletion, tag lengths must be longerthan one might expet. For example, if tl = 32, then the above equation would upper-bound theadvantage of an adversary against this modi�ed onstrution as 1. This means that 32-bit tagsshould not be used with this modi�ed onstrution when authentiating long messages. While onemight onsider this more of a \erti�ational" problem than a real problem, we view this propertyas undesirable. Hene our deision to speify CWC as in Setion 3.
16

www.manaraa.com

6 ConlusionsIn this work we present CWC, the �rst patent-free, parallelizable, and provably-seure dediatedblok ipher mode of operation. Beause of its inherent parallelism, CWC-AES is apable of pro-essing data at 10 Gbps in hardware, making it ideal for use with oming 10 Gbps IPse networkdevies. CWC-AES is also eÆient in software, with the urrent implementation omparable tourrent implementations of the other patent-free (albeit not parallelizable) modes of operationsCCM-AES and EAX-AES. In software, we antiipate signi�ant speedups after swithing to as-sembly and using the preomputation approah for CWC-HASH disussed in Setion 4. Finally,CWC-AES is provably seure assuming that AES is a seure pseudorandom permutation, whih isa reasonable assumption and, in fat, was one of the AES design riteria.AknowledgmentsWe thank Peter Gutmann, David MGrew, Fabian Monrose, Avi Rubin, Adam Stubble�eld, andDavid Wagner for their omments. Additionally, we thank Brian Gladman for helping to validateour test vetors and for working with us to obtain timing information. T. Kohno was supportedby a National Defense Siene and Engineering Fellowship.Referenes[1℄ M. Bellare and C. Namprempre. Authentiated enryption: Relations among notions andanalysis of the generi omposition paradigm. In T. Okamoto, editor, Advanes in Cryptology{ ASIACRYPT 2000, volume 1976 of Leture Notes in Computer Siene, pages 531{545.Springer-Verlag, Berlin Germany, De. 2000.[2℄ M. Bellare, P. Rogaway, and D. Wagner. A onventional authentiated-enryption mode, 2003.Available at http://eprint.iar.org/2003/069/.[3℄ D. Bernstein. Floating-point arithmeti and message authentiation, 2000. Available at http://r.yp.to/papers.html#hash127.[4℄ B. Gladman. AES and ombined enryption/authentiation modes, 2003. Available at http://fp.gladman.plus.om/AES/index.htm.[5℄ V. Gligor and P. Donesu. Fast enryption and authentiation: XCBC enryption and XECBauthentiation modes. In Fast Software Enryption 2001, Leture Notes in Computer Siene.Springer-Verlag, Berlin Germany, 2001.[6℄ C. Heker. Perspetive texture mapping, part V: It's about time. Game Developer, Apr. 1996.Available at http://www.d6.om/users/heker/pdfs/gdmtex5.pdf.[7℄ C. Jutla. Enryption modes with almost free message integrity. In B. P�tzmann, editor,Advanes in Cryptology { EUROCRYPT 2001, volume 2045 of Leture Notes in ComputerSiene, pages 529{544. Springer-Verlag, Berlin Germany, May 2001.[8℄ J. Katz and M. Yung. Unforgeable enryption and hosen iphertext seure modes of operation.In B. Shneier, editor, Fast Software Enryption 2000, volume 1978 of Leture Notes inComputer Siene, pages 284{299. Springer-Verlag, Berlin Germany, Apr. 2000.17

www.manaraa.com

[9℄ H. Krawzyk. LFSR-based hashing and authentiation. In Y. Desmedt, editor, Advanesin Cryptology { CRYPTO '94, Leture Notes in Computer Siene. Springer-Verlag, BerlinGermany, Aug. 1994.[10℄ H. Krawzyk. The order of enryption and authentiation for proteting ommuniations (or:How seure is SSL?). In J. Kilian, editor, Advanes in Cryptology { CRYPTO 2001, volume2139 of Leture Notes in Computer Siene, pages 310{331. Springer-Verlag, Berlin Germany,Aug. 2001.[11℄ H. Lipmaa. AES/Rijndael: speed, 2003. Available at http://www.ts.hut.fi/~helger/aes/rijndael.html.[12℄ D. MGrew. Integer ounter mode, Ot. 2002. Available at http://www.ietf.org/internet-drafts/draft-irtf-frg-im-00.txt.[13℄ D. MGrew. The trunated multi-modular hash funtion (TMMH), version two, Ot. 2002.Available at http://www.ietf.org/internet-drafts/draft-irtf-frg-tmmh-00.txt.[14℄ D. MGrew. The universal seurity transform, Ot. 2002. Available at http://www.ietf.org/internet-drafts/draft-irtf-frg-ust-00.txt.[15℄ P. Rogaway. Buket hashing and its appliations to fast message authentiation. Journal ofCryptology, 12:91{115, 1999.[16℄ P. Rogaway. Authentiated enryption with assoiated data. In Proeedings of the 9th Con-ferene on Computer and Communiations Seurity, Nov. 2002.[17℄ P. Rogaway, M. Bellare, J. Blak, and T. Krovetz. OCB: A blok-ipher mode of operationfor eÆient authentiated enryption. In Proeedings of the 8th Conferene on Computer andCommuniations Seurity, pages 196{205. ACM Press, 2001.[18℄ P. Rogaway and D. Wagner. A ritique of CCM, Apr. 2003. Available at http://eprint.iar.org/2003/070/.[19℄ D. Stinson. Universal hashing and authentiation odes. Designs, Codes and Cryptography,4:369{380, 1994.[20℄ M. Wegman and L. Carter. New hash funtions and their use in authentiation and set equality.Journal of Computer and System Sienes, 22:265{279, 1981.[21℄ D. Whiting, N. Ferguson, and R. Housley. Counter with CBC-MAC (CCM). Submission toNIST. Available at http://sr.nist.gov/CryptoToolkit/modes/proposedmodes/, 2002.A Intelletual property statementThe authors hereby expliitly release any intelletual property rights to the CWC mode into thepubli domain. The authors are not aware of any patent or patent appliation anywhere in theworld that over this mode.
18

www.manaraa.com

B Summary of propertiesIn this appendix we summarize some of the properties of CWC. We inlude all of the propertieslisted in the submission guidelines on the NIST Modes of Operation website. We also disuss someadditional properties that we feel are important.Seurity funtion. CWC is a provably seure authentiated enryption with assoiated data(AEAD) mode. Informally, this means that the enapsulation algorithm, on input a pair of messages(A;M) and some none N , enapsulates (A;M) in a way that protets the privay of M and theintegrity of both A and M . Our formal seurity statements appear in Setion 5 and the proofsappear in Appendix C.Error propagation. Assuming that the underlying blok ipher is a seure pseudorandomfuntion or permutation, any attempt, by an adversary using reasonable resoures, to forge a newiphertext will, with very high probably, be deteted. This follows from the fat that CWC is aprovably-seure AEAD mode.Synhronization. Synhronization is based on the none. As with other none-based AEADmodes, the none must either be sent with the iphertext or the reeiver must know how to derivethe none on its own.Parallelizability. CWC is parallelizable. The amount of parallelism for the hashing portion anbe determined by the implementor without a�eting interoperability.Keying material required. CWC is de�ned to be a single-key AEAD mode. However, CWCdoes internally use two keys (the main blok ipher key and a hash key whih is derived using theblok ipher key). Implementors an deide whether to store the derived hash key in memory orwhether to re-derive it as needed.Counter/IV/none requirements. CWC uses a 11-otet none. CWC is provably seure aslong as one does not query the enryption algorithm twie with the same none. Although it ispossible to instantiate the generi CWC paradigm with other none lengths, for CWC the nonesize is �xed at 11-otets in order to minimize interoperability issues.Memory requirements. The software memory requirements are basially those of the underlyingblok ipher. For example, fast AES in software requires 4K bytes of table, and about 200 bytes ofexpanded key material. In some situations, software implementations may preompute powers ofthe hash subkey.Pre-proessing apability. The underlying CTR mode keystream an be preomputed. Theonly blok ipher input that annot be preomputed is the output of CWC-HASH.CWC an preproess its assoiated data, thereby reduing omputation time if the assoiateddata remains stati or hanges only infrequently.Message length requirements. The assoiated data and message an both be any string ofotets with length at most 128 �(232�1) bits. Beause there does not appear to be a need to handlestrings of arbitrary bit-length, CWC as urrently spei�ed annot enapsulate arbitrary bit-lengthmessages. (As disussed in Setion 3, it is easy to modify CWC to handle arbitrary bit-lengthmessages, if desired.)Ciphertext expansion. The iphertext expansion is the minimum possible while still providing atl-bit tag. That is, on input a pair (A;M), a none N , and a key K, CWC-ENCK(N;A;M) outputsa iphertext C with length jCj = jM j+ tl.Blok ipher invoations. If the hash subkey Kh is omputed as part of the key generation19

www.manaraa.com

proess and not during eah invoation of the CWC enapsulation routine, then CWC makes oneblok ipher invoation during key setup and djM j=128e+2 blok ipher invoations during enap-sulation and deapsulation. If the hash subkey Kh is not omputed as part of the key generationproess, then CWC makes no blok ipher invoations during key setup and djM j=128e + 3 blokipher invoations during enapsulation and deapsulation.Provable seurity. CWC is a provably-seure AEAD mode assuming that the underlying blokipher (e.g., AES) is a seure pseudorandom funtion or permutation. The proofs of seurity donot require the blok ipher to satisfy the strong notion of super-pseudorandomness required bysome other blok ipher modes of operation.Number of options and interoperability. CWC uses a minimal number of options. The onlyoptions are the hoie of the underlying blok ipher (and key length) and the tag length. Havingfewer options makes interoperability easier.On-line. The CWC enryption algorithm is on-line. This means that CWC an proess data as itarrives, rather than waiting for the entire message to be bu�ered before beginning the enryptionproesses. This may be advantageous when enrypting streaming data soures. (Note, however,that, like any other AEAD mode, the deryptor should still bu�er the entire message and hekthe tag � before revealing the plaintext and assoiated data.)Patent status. To the best of our knowledge CWC is not overed by any patents.Performane. CWC is eÆient in both hardware and software. In hardware, CWC an proessdata at 10 Gbps.Simpliity. Although simpliity is a matter of perspetive, we believe that CWC is a very simpleonstrution. It ombines standard CTR mode enryption with the evaluation of a polynomialmodulo 2127�1. Beause of its simpliity, we believe that CWC is easy to implement and understand.C Proofs of Theorem 5.1 and Theorem 5.2Before proving Theorem 5.1 and Theorem 5.2, we �rst state results about the general CWC paradigm(see Lemma C.5 and Lemma C.6 below). We then show how Theorems 5.1 and 5.2 follow fromLemmas C.5 and C.6. We then prove these two lemmas.C.1 More de�nitionsWe begin with a few additional de�nitions.Universal hash funtions. A hash funtion HF = (Kh;H) onsists of two algorithms andis de�ned over some key spae KeySpHF , some message spae MsgSpHF , and some hash spaeHashSpHF . The randomized key generation algorithm returns a random key K 2 KeySpHF ; wedenote this as K $ Kh. The deterministi hash algorithm takes a key K 2 KeySpHF and amessage M 2 MsgSpHF and returns a hash value h 2 HashSpHF ; we denote this as h HK(M).Let H $ HF be shorthand for K $ Kh ; H HK .The hash funtionHF is said to be �-almost universal (�-au) if for all distintm;m0 2 MsgSpHF ,Pr hH $ HF : H(m) = H(m0) i � � :The hash funtion HF is said to be �-almost xor universal (�-axu) if HashSpHF = f0; 1gn forsome positive integer n and for all distint m;m0 2 MsgSpHF and 2 f0; 1gn,Pr hH $ HF : H(m)�H(m0) = i � � :20

www.manaraa.com

Pseudorandom funtions. If X and Y are sets, then Fun(X;Y) denotes the set of all funtionsfrom X to Y . If l and L are positive integers, then Fun(l; L) denotes the set of all funtions fromf0; 1gl to f0; 1gL.Let F be a family of funtions from D to R. Let A be an adversary with aess to an oraleand that returns a bit. ThenAdvprfF (A) = Pr h f $ F : Af(�) = 1 i� Pr h g $ Fun(D;R) : Ag(�) = 1 idenotes the prf-advantage of A in distinguishing a random instane of F from a random funtion.Intuitively, we say that F is a seure prf if the prf-advantages of all adversaries using reasonableresoures is small.Message authentiation. A noned message authentiation shemeMA = (Km;T ;V) onsistsof three algorithms and is de�ned over some key spae KeySpMA, some none spae NoneSpMA,some message spae MsgSpMA, and some tag spae TagSpMA. The randomized key generationalgorithm returns a key K 2 KeySpMA; we denote this as K $ Km. The deterministi taggingalgorithm T takes a key K 2 KeySpMA, a none N 2 NoneSpMA, and a message M 2 MsgSpMAand returns a tag � 2 TagSpMA; we denote this proess as � T NK (M) or � TK(N;M).The deterministi veri�ation algorithm V takes as input a key K 2 KeySpMA, a none N 2NoneSpMA, a message M 2 MsgSpMA, and a andidate tag � 2 f0; 1g�, omputes � 0 = T NK (M),and returns aept if � 0 = � and returns rejet otherwise.Let F be a forging adversary and onsider an experiment in whih we �rst pik a random keyK $ Km and then run F with orale aess to TK(�; �). We say that F forges if F returns a triple(N;M; �) suh that VNK (M; �) = aept but F did not make a query (N;M) to TK(�; �) that resultedin a response � . Then AdvufMA(F) = Pr hK $ Km : F TK(�;�) forges idenotes the uf-advantage of F in breaking the unforgeability of MA. An adversary is none-respeting if it never queries its tagging orale with the same none twie. Intuitively, MA isunforgeable if the uf-advantage of all none-respeting adversaries with reasonable resoures issmall.C.2 The general CWC onstrutionWe now desribe our generalization of the CWC onstrution.Constrution C.1 [General CWC.℄ Let l; L; n; o; t; k be positive integers suh that t � L. (Fur-ther restritions will be plaed shortly.) Essentially, l is the length of the input to a prf (e.g., 128),L is the length of the output from the prf (e.g., 128), n is the length of the none (e.g., 88), o isthe length of the o�set (e.g., 32), t is the length of the desired tag (e.g., 64 or 128), k is the lengthof the hash funtion's keysize (e.g., 127).Let F be a family of funtions from f0; 1gl to f0; 1gL. Let HF = (Kh;H) be a family of hashfuntions with HashSpHF = f0; 1gl and KeySpHF = f0; 1gk (and Kh works by randomly seletingand returning an element from f0; 1gk with uniform probability). Let tr0 : Zdk=Le ! f0; 1gl,tr1 : f0; 1gn�(Z2o�f0g)! f0; 1gl and tr2 : f0; 1gn ! f0; 1gl be eÆiently-omputable injetivefuntions. If W = f tr0(O) : O 2 Zdk=Le g, X = f tr1(N;O) : N 2 f0; 1gn; O 2 (Z2o � f0g) g,Y = f tr2(N) : N 2 f0; 1gn g, and Z = f HK(M) : K 2 KeySpHF ;M 2 MsgSpHF g, we requirethat W , X, Y , and Z be pairwise mutually exlusive.Let extrat : f0; 1gdk=Le�L ! f0; 1gk be a funtion that takes as input a dk=Le �L-bit string andthat outputs a k-bit string. We require that extrat always pik the same k bits from the input21

www.manaraa.com

string and always outputs those bits in the exat same order (e.g., extrat returns the �rst k bitsof its input).Let SE [F;HF ℄ = (Ke; E ;D) be an AEAD mode built from funtion family F and hash fun-tion HF and using the above funtions extrat, tr0, tr1, tr2. We assume that AdSpSE[F;HF℄ �MsgSpSE[F;HF℄ � MsgSpHF and that all messages in MsgSpSE[F;HF℄ have length at most L � (2o�1).Note that the former means that the message spae of HF atually onsists of pairs of strings. LetNoneSpSE[F;HF℄ = f0; 1gn. Let SE [F;HF ℄'s omponent algorithms be de�ned as follows:Algorithm Kef $ FKh extrat(f(tr0(0))kf(tr0(1))k � � � kf(tr0(dk=Le � 1))) ; H HKhReturn hf;HiAlgorithm EN;Ahf;Hi(M)� CTR-MODENf (M)� �rst t bits of (f(tr2(N))� f(H(A; �)))Return �k�Algorithm DN;Ahf;Hi(C)If jCj < t then return INVALIDParse C as �k� // j� j = tIf A 62 AdSpSE[F;HF℄ or � 62 MsgSpSE[F;HF℄ then return INVALID� 0 �rst t bits of (f(tr2(N))� f(H(A; �)))If � 6= � 0 return INVALIDM CTR-MODENf (�)Return MAlgorithm CTR-MODENf (X)� djXj=LeFor i = 1 to � doZi f(tr1(N; i))Y (�rst jXj bits of Z1kZ2k � � � kZ�)�XReturn YRemark C.2 Reall that one requirement on the message spae for any AEAD mode is that if itontains any string M , then it ontains all strings of length jM j. This means that the membershiptest � 62 MsgSpSE[F;HF℄ and the appliation of H to (A; �) makes sense.Remark C.3 As spei�ed in the de�nition, AdSpSE[F;HF℄ � MsgSpSE[F;HF℄ � MsgSpHF . Thismeans that we HF is used to hash pairs of strings, not just string. This is not a serious restritionsine given any hash funtion that hashes strings, it is trivial to onstrut a hash funtion thathashes pairs of strings (by enoding the pair of strings as a single string in some appropriatemanner).Remark C.4 It is also worth ommenting on the purpose of tr0, tr1, and tr2. As shown inConstrution C.1, these funtions are used to derive the inputs to the onstrution's underlyingfuntion f . By requiring that none of the outputs ollide (i.e., that the sets W;X; Y; Z in thede�nition are pairwise mutually exlusive), we ensure that the inputs to f for di�erent purposesnever ollide. For example, the inputs to f used for ounter mode enryption will always be di�erentthan the inputs to f when eniphering the output of H.22

www.manaraa.com

C.3 The seurity of the general CWC onstrutionWe now state the following results for all Constrution C.1-style AEAD modes. We shall proveLemmas C.5 and C.6 in Appendies C.5 and C.6, respetively.Lemma C.5 [Integrity of Constrution C.1.℄ Let SE [F;HF ℄ be as in Constrution C.1 andlet HF be an �-au hash funtion. Then given any none-respeting auth adversary A againstSE [F;HF ℄, we an onstrut a prf adversary BA against F suh thatAdvauthSE[F;HF℄(A) � AdvprfF (BA) + �+ 2�t :Furthermore, the experiment for BA takes the same time as the experiment for A and, if A makesat most q�1 orale queries and a total of at most � bits of payload data (for both these q�1 oralequeries and the forgery attempt), then BA makes at most �=L+ 3q + dk=Le orale queries.Lemma C.6 [Privay of Constrution C.1.℄ Let SE [F;HF ℄ be as in Constrution C.1. Thengiven a none-respeting ind$-pa adversary A against SE [F;HF ℄ one an onstrut a prf adver-sary BA against F suh that AdvprivSE[F;HF℄(A) � AdvprfF (BA) :Furthermore, the experiment for BA takes the same time as the experiment for A and, if A makesat most q orale queries totaling at most � bits of payload data, then BA makes at most �=L +3q + dk=Le orale queries.We interpret these lemmas as follows. Intuitively, the �rst lemma states that if F is a seure prf,if HF is �-au where � is not too large, and if t is not too small, then SE [F;HF ℄ preserves integrity.We omment that most modern blok iphers (e.g., AES) are onsidered to be seure prps (andtherefore also seure prfs up to a birthday term). We also omment that we an onstrut hashfuntions HF with provably small �.Intuitively, the seond lemma states that if F is a seure prf, then SE [F;HF ℄ will preserveprivay. We disuss the meaning of these types of proofs in more detail in Setion 5.C.4 Proof of Theorem 5.1 and Theorem 5.2The seurity of the CWC onstrution from Setion 3 follows from Lemmas C.5 and C.6 assumingthat (1) CWC as desribed in Setion 3 is really an instantiation of Constrution C.1 and (2) thatthe hash funtion used in Setion 3 is �-au for some small �. We begin by justifying the seondbullet.Lemma C.7 [CWC-HASH (Setion 3) is �-almost universal.℄ Consider the CWC-BC-tl on-strution from Setion 3. Let HF = (Kh;H) be the hash funtion funtion whose key generationalgorithm selets a random key K from f0; 1g127 and let HK be the CWC-HASH funtion exeptthat we replae Z last 127 bits of BCK(110126)with Z K :Note that AdSpCWC-BC-tl � MsgSpCWC-BC-tl � MsgSpHF ; that is, HK takes two strings as input.Assume HF hashes pairs of strings where the �rst string is always at most n � MaxAdLen bits long23

www.manaraa.com

and the seond string is always at most m � MaxMsgLen bits long. Then HF is �-almost universalwhere � � n+m2133 + 12125 :Proof of Lemma C.7: Let (A; �) and (A0; �0) be two distint inputs to HK and let X =(B1; : : : ; B�+1) and Y = (C1; : : : ; C+1) respetively denote their enodings as vetors of 96-bitintegers (with B�+1 and C+1 possibly longer than 96-bits long). Without loss of generality, assume� � and let X 0 = (B01; : : : ; B0+1) where B0j = 0 for j 2 f1; : : : ; � �g and B0j = Bj�+� forj 2 f � � + 1; : : : ; + 1g (i.e., prepend � � zero elements to the X vetor).If (A; �) 6= (A0; �0) then X 0 6= Y . This follows from the fat that B0+1 and C+1 respetivelyenode the lengths of A and � and of A0 and �0 and that if X 0 = Y , then the B0+1 = C+1 and(A; �) = (A0; �0).Note that HK(A; �) = HK(A0; �0) when�B01 �Kh + � � � +B0 �Kh +B0+1�� �C1 �Kh + � � � +C �Kh + C+1� = 0 mod 2127 � 1 (3)where Kh is the hash key derived from K as spei�ed in CWC-HASH. Sine the vetors X 0 and Yare not equal, �B01 �Kh + � � �+B0 �Kh +B0+1�� �C1 �Kh + � � �+C �Kh +C+1� is a non-zeropolynomial of degree at most . Therefore, by the Fundamental Theorem of Algebra, Equation 3has at most solution modulo 2127 � 1.Sine we are interested in the probability, over the 127-bit keys K, that Equation 3 is true, we notethat all keys Kh modulo 2127 � 1 (exept 0) have exatly one ways of ourring and that the 0 keyan our in one additional way (i.e., the all 0 string and the all 1 string). This means that of the2127 possible keys K, at most + 1 an lead to keys Kh suh that Equation 3 is true.Finally, note that is at most 2 + (n+m)=96 (the +2 omes from the fat that we append 0 bitsto A and �). Consequently � � n+m96 + 32127 � n+m2133 + 12125as desired.We now prove Theorem 5.1 and Theorem 5.2, whih are orollaries of Lemmas C.5, C.6, and C.7.Proof of Theorem 5.1 and Theorem 5.2: To prove these theorems we must show that theCWC-BC-tl onstrutions from Setion 3 are instantiations of Constrution C.1. We begin by notingthat the blok ipher BC in CWC-BC-tl plays the role of F in Constrution C.1 and that the hashfuntion CWC-HASH (with the simpli�ed key generation algorithm from Lemma C.7) plays the roleof HF in Constrution C.1.Sine BC plays the role of F , we have that l = L = 128. Furthermore, as desribed in Setion 3,n = 88, o = 32, t = tl, and k = 127. We note that the output the hash funtion is a 128-bitstring whose �rst bit is always 0. This property, as well as the enodings for the none/o�sets whenenrypting the message and the Carter-Wegman MAC and when generating the hash key, ensurethat requisite properties for the interations between the hash funtion, tr0, tr1, and tr2.A diret omparison of the Constrution C.1 algorithms and the algorithms from Setion 3 showsthat they are equivalent. CWC-BC-tl is therefore an instantiation of Constrution C.1 and theprovable seurity of CWC-BC-tl follows. 24

www.manaraa.com

Finally, we apply the standard prf-prp swithing tehnique in order to model the underlying blokipher as a prp rather than a prf in Theorem 5.1 and Theorem 5.2.C.5 Proof of Lemma C.5We being by skething the proof of Lemma C.5. We �rst show that applying a random funtionto the output of an �-au hash funtion yields an �0-axu hash funtion (Proposition C.9). We thenreall the result of Krawzyk [9℄ that xoring the output of an axu hash funtion with a one-timepad yields a seure MAC (Proposition C.11). Suh a MAC essentially orresponds to the seondand third boxed steps in Constrution C.1. (We do not need this �nal blok ipher appliation ifthe input to the hash inludes the none and if we aept a birthday term of the form q2�.)We then observe that if we onsider a onstrution like Constrution C.1 but with the lattertwo boxed steps replaed with alls to a seure MAC that tags pairs of strings (A; �) with nonesN , then that onstrution would be unforgeable (Proposition C.13). In Proposition C.16 we usethe above results to show that SE [Fun(l; L);HF ℄ preserves integrity (where SE [Fun(l; L);HF ℄ isas in Constrution C.1). Lemma C.5 follows.From AU to AXU. Let us begin with the following onstrution.Constrution C.8 [Building AXU hash funtions from AU hash funtions.℄ Let HF =(Kh;H) be a hash funtion and let HF [t℄ = (Kh;H), t a positive integer, be the hash funtionde�ned as follows: Kh H $ HFe $ Fun(HashSpHF ; f0; 1gt)Return hH; ei HhH;ei(M)Return e(H(M))Note that MsgSpHF [t℄ = MsgSpHF and HashSpHF [t℄ = f0; 1gt.Proposition C.9 Let HF , t, and HF [t℄ be as in Constrution C.8. If HF is �-au, then HF [t℄ is(�+ 2�t)-axu.This result follows from a result in [19, 15℄ whih states that the omposition of an �0-axu hashfuntion, with domain B and range C, with an �-au hash funtion, with domain A and range B, isan (�+�0)-axu hash funtion with domain A and range C, and the fat that the hash funtion whosekey generation algorithm returns a random funtion from Fun(HashSpHF ; f0; 1gt) is 2�t-axu.Carter-Wegman MACs. Consider now the following onstrution.Constrution C.10 [Building MACs from AXU hash funtions.℄ Let HF = (Kh;H) bea hash funtion with hash spae f0; 1gt, t a positive integer. We an onstrut a noned messageauthentiation shemeMA = (Km;T ;V) as follows:KmH $ HFg $ Fun(NoneSpMA; f0; 1gt)Return hH; gi ThH;gi(N;M)Return g(N) �H(M) VhH;gi(N;M; �)If g(N) �H(M) = � thenreturn aeptElse return rejetNote that MsgSpMA = MsgSpHF , TagSpMA = f0; 1gt, and that NoneSpMA is arbitrary.25

www.manaraa.com

We now state the following result, due to Krawzyk [9℄.Proposition C.11 Let HF and MA be as in Constrution C.10. If HF is �-axu, then for allnone-respeting uf adversaries F attakingMA, AdvufMA(F) � �.As noted in [9℄, this proposition follows from the fats that xoring the output of the hash funtionwith g(N) prevents any loss of information (assuming that the adversary is none-respeting), thata forgery attempt with a previous none is upper-bounded by �, and that a forgery attempt witha new none is upper-bounded by 2�t � �.Enrypt-then-Authentiate. Consider the following Enrypt-then-Authentiate [1, 10℄ on-strution.Constrution C.12 [Enrypt-then-Authentiate.℄ Let l; L; n; o; t be positive integers. (Fur-ther restritions will be plaed shortly.) Essentially, l is the length of the input to a prf (e.g., 128),L is the length of the output from the prf (e.g., 128), n is the length of the none (e.g., 88), o isthe length of the o�set (e.g., 32).Let F be a family of funtions from f0; 1gl to f0; 1gL. Let MA = (Km;T ;V) be a messageauthentiation sheme with NoneSpMA = f0; 1gn and TagSpMA = f0; 1gt. Let tr1 : f0; 1gn �(Z2o � f0g)! f0; 1gl be an eÆiently-omputable injetive funtion.Let SE [F;MA℄ = (Ke; E ;D) be an AEAD mode built from funtion family F and messageauthentiation sheme MA and using the above funtion tr1. We assume that AdSpSE[F;MA℄ �MsgSpSE[F;MA℄ � MsgSpMA and that all messages inMsgSpSE[F;MA℄ have length at most L�(2o�1).Note that the former means that the message spae ofMA atually onsists of pairs of strings. LetNoneSpSE[F;MA℄ = NoneSpMA. Let SE [F;MA℄'s omponent algorithms be de�ned as follows:Algorithm Kef $ FK $ KmReturn hf;KiAlgorithm EN;Ahf;Ki(M)� CTR-MODENf (M)� T NK (A; �)Return �k�Algorithm DN;Ahf;Ki(C)If jCj < t then return INVALIDParse C as �k� // j� j = tIf A 62 AdSpSE[F;MA℄ or � 62 MsgSpSE[F;MA℄ then return INVALID� 0 T NK (A; �)If � 6= � 0 return INVALIDM CTR-MODENf (�)Return MAlgorithm CTR-MODENf (X)� djXj=LeFor i = 1 to � do 26

www.manaraa.com

Zi f(tr1(N; i))Y (�rst jXj bits of Z1kZ2k � � � kZ�)�XReturn YProposition C.13 Let SE [F;MA℄ be as in Constrution C.12. Then given a none-respetingauth adversary B against SE [F;MA℄, we an onstrut a none-respeting forgery adversary DBagainstMA suh that AdvauthSE[F;MA℄(B) � AdvufMA(DB) :Furthermore the experiment for DB uses the same time as the experiment for B and if B makes qenryption orale queries, then DB makes q tagging orale queries.The approah used in [1℄ when analyzing Enrypt-then-Authentiate onstrutions an be used toprove Proposition C.13. The only di�erene is that we onsider MACs that also take nones asinput.Combining these onstrutions. Let us now ombine these onstrutions.Constrution C.14 [Combined CWC.℄ Let l; L; n; o; t; k be positive integers suh that t � L.(Further restritions will be plaed shortly.) Essentially, l is the length of the input to a prf (e.g.,128), L is the length of the output from the prf (e.g., 128), n is the length of the none (e.g., 88),o is the length of the o�set (e.g., 32), t is the length of the desired tag (e.g., 64 or 128), k is thelength of the hash funtion's keysize (e.g., 128).Let F be a family of funtions from f0; 1gl to f0; 1gL. Let HF = (Kh;H) be a family of hashfuntions with HashSpHF = f0; 1gl and KeySpHF = f0; 1gk (and Kh works by randomly seletingand returning an element from f0; 1gk with uniform probability). Let tr1 : f0; 1gn�(Z2o�f0g)!f0; 1gl be an eÆiently-omputable injetive funtion. Let extrat : f0; 1gdk=Le�L ! f0; 1gk be afuntion that takes as input a dk=Le �L-bit string and that outputs a k-bit string. We require thatextrat always pik the same k bits from the input string and always outputs those bits in the exatsame order (e.g., extrat returns the �rst k bits of its input).Let SE [F;HF ℄ = (Ke; E ;D) be an AEAD mode built from funtion family F and hash funtionHF and using the above funtions extrat and tr1. We assume that AdSpSE[F;HF℄�MsgSpSE[F;HF℄ �MsgSpHF and that all messages inMsgSpSE[F;HF℄ have length at most L�(2o�1). Note that the for-mer means that the message spae ofHF atually onsists of pairs of strings. Let NoneSpSE[F;HF℄ =f0; 1gn. Let SE [F;HF ℄'s omponent algorithms be de�ned as follows:Algorithm Kef $ Fd $ Fun(Zdk=Le; f0; 1gL) ; e $ Fun(HashSpHF ; f0; 1gt) ; g $ Fun(NoneSpSE[F;HF℄; f0; 1gt)Kh extrat(d(0)kd(1)k � � � kd(dk=Le � 1)) ; H HKhReturn hf;H; e; giAlgorithm EN;Ahf;H;e;gi(M)� CTR-MODENf (M)� g(N) � e(H(A; �))Return �k�
27

www.manaraa.com

Algorithm DN;Ahf;H;e;gi(C)If jCj < t then return INVALIDParse C as �k� // j� j = tIf A 62 AdSpSE[F;HF℄ or � 62 MsgSpSE[F;HF℄ then return INVALID� 0 g(N) � e(H(A; �))If � 6= � 0 return INVALIDM CTR-MODENf (�)Return MAlgorithm CTR-MODENf (X)� djXj=LeFor i = 1 to � doZi f(tr1(N; i))Y (�rst jXj bits of Z1kZ2k � � � kZ�)�XReturn YProposition C.15 Let SE [F;HF ℄ be as in Constrution C.14 and let HF be an �-au hash fun-tion. Then the advantage of any none-respeting auth adversary A in breaking the authentiityof SE [F;HF ℄ is upper bounded byAdvauthSE[F;HF℄(A) � �+ 2�t :Proof of Proposition C.15: We �rst note that the steps d $ Fun(Zdk=Le; f0; 1gL) ; Kh extrat(d(0)kd(1)k � � � kd(dk=Le � 1)) ; H HKh is equivalent to the step H $ HF .Note that e(H(A; �)) an be rewritten as HhH;ei(A; �) where HF [t℄ = (Kh;H) is omposed fromHF per Constrution C.8.Also note that g(N)�HhH;ei(A; �) an be replaed with T NhHhH;ei;gi(A; �) whereMA = (Km;T ;V)is omposed from HF [t℄ as per Constrution C.10.By Proposition C.13, given A we an onstrut an adversary BA againstMA suh thatAdvauthSE[F;HF℄(A) � AdvufMA(BA) :By Proposition C.11 we know that AdvufMA(BA) � �0where �0 is �+ 2�t (the latter by Proposition C.9).Integrity of SE [Fun(l; L);HF ℄. We now onsider the integrity of SE [Fun(l; L);HF ℄.Proposition C.16 Let SE [Fun(l; L);HF ℄ be a AEAD mode as in Constrution C.1. Then forany none-respeting auth adversary A against SE [Fun(l; L);HF ℄, we have thatAdvauthSE[Fun(l;L);HF ℄(A) � �+ 2�t :Proof of Proposition C.16: Let SE 0[Fun(l; L);HF ℄ be as in Constrution C.14. Note thatSE [Fun(l; L);HF ℄ and SE 0[Fun(l; L);HF ℄ are idential exept that the former uses only one ran-dom funtion f and SE 0[Fun(l; L);HF ℄ uses four random funtions (one to generate the hashkey, one to CTR-mode enrypt the message, one to enipher the output of the hash funtion,28

www.manaraa.com

and one to CTR-mode enrypt the output of the hash funtion). Furthermore, reall that, forSE [Fun(l; L);HF ℄, there is never a ollision in the input to f between the four di�erent usesof f (this was a requirement imposed on HF , tr0, tr1, and tr2). Consequently, the fat thatSE 0[Fun(l; L);HF ℄ uses four random funtions and SE [Fun(l; L);HF ℄ uses one is immaterial.Hene the probability that A forges against SE [Fun(l; L);HF ℄ is the same as the probability thatit forges against SE 0[Fun(l; L);HF ℄. I.e.,AdvauthSE[Fun(l;L);HF ℄(A) = AdvauthSE 0[Fun(l;L);HF ℄(A) :By Proposition C.15, we know the latter probability is upper bounded by �+ 2�t.Proof of Lemma C.5. We now prove Lemma C.5.Proof of Lemma C.5: Adversary BA runs A and replies to A's orale queries using its orale f .If A returns a valid forgery, BA returns 1, otherwise BA returns 0. This implies thatAdvauthSE[F;HF℄(A) = Pr h f $ F : Bf(�)A = 1 iand AdvauthSE[Fun(l;L);HF ℄(A) = Pr h f $ Fun(l; L) : Bf(�)A = 1 i :Sine AdvauthSE[Fun(l;L);HF ℄(A) � �+ 2�tby Proposition C.16, we haveAdvauthSE[F;HF℄(A) = AdvauthSE[F;HF℄(A)�AdvauthSE[Fun(l;L);HF ℄(A) +AdvauthSE[Fun(l;L);HF ℄(A)� Pr h f $ F : Bf(�)A = 1 i� Pr h f $ Fun(l; L) : Bf(�)A = 1 i+ �+ 2�t= AdvprfF (BA) + �+ 2�tas desired.C.6 Proof of Lemma C.6Proof of Lemma C.6: Let BA be a prf adversary against F that uses adversary A and that hasorale aess to a funtion g : f0; 1gl ! f0; 1gL. Adversary BA runs A and replies to A's enryptionorale queries using its own orale g(�) for the funtion f in Constrution C.1. Adversary BA returnsthe same bit that A returns. ThenPr h hf;Hi $ Ke : AEhf;hi(�;�;�) = 1 i = Pr h g $ F : Bg(�)A = 1 isine when BA is given a random instane of F it runsA exatly as if A was given the real enryptionorale. Furthermore Pr hA$(�;�;�) = 1 i = Pr h g $ Fun(l; L) : Bg(�)A = 1 isine BA replies to all of A's orale queries with independently seleted random strings. Conse-quently AdvprivSE[F;HF℄(A) � AdvprfF (BA)as desired. 29

www.manaraa.com

D Test vetorsVetor #1: CWC-AES-128AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FPLAINTEXT: 00 01 02 03 04 05 06 07ASSOC DATA: <None>NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8CHASH VALUE: 2B 9E AE BE 67 3F AE 03 6B 16 EA 31 DC A7 AE 6BAES(HVAL): FC DC 06 4C CD CA FE E3 DE 7A A3 CF 5C 5D B9 7BMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 57 55 DB A5 09 9F 3F 1D60 04 44 97 DE 89 33 A9Vetor #2: CWC-AES-192AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80PLAINTEXT: 00 01 02 03 04 05 06 07ASSOC DATA: <None>NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5HASH VALUE: 40 E6 24 83 4B 27 9A 7B 15 42 C7 FE 29 EB 29 A3AES(HVAL): 69 CC 0E 3D 96 98 EB 75 1F 06 A5 90 9B C2 4F 5AMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72CIPHERTEXT: F0 DB A9 74 12 30 01 B0 AF 7A FA 0E 6F 8A D2 3A75 8A 1C 43 69 B9 43 28Vetor #3: CWC-AES-256AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00PLAINTEXT: 00 01 02 03 04 05 06 07ASSOC DATA: <None>NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5HASH VALUE: 18 99 E1 A6 1E 6E 37 65 C6 3A 41 99 56 8C D1 BFAES(HVAL): 1C 56 65 0A 22 BC B5 94 AC F3 CA 24 46 03 B8 5EMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B 8E 5C 5E 4C A0 99 A3 65F6 50 D1 8A CB E8 CA FEVetor #4: CWC-AES-128AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F30

www.manaraa.com

PLAINTEXT: 00 01 02 03 04 05 06 07ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 7465 78 74 20 68 65 61 64 65 72 2E 00NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8CHASH VALUE: 2E A9 2A A5 28 B1 1C 08 1C C8 2F 24 9B E4 19 8DAES(HVAL): EA 54 F8 3D 56 7F 53 05 88 B1 EA 96 36 79 CD ACMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 41 DD 25 D4 92 2A 92 FB36 CF 0D CE B4 AD 47 7EVetor #5: CWC-AES-192AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80PLAINTEXT: 00 01 02 03 04 05 06 07ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 7465 78 74 20 68 65 61 64 65 72 2E 00NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5HASH VALUE: 60 3F FC 24 71 64 2E D9 57 E1 B1 EA F2 F8 B0 34AES(HVAL): D8 39 86 2A 33 5A 54 68 C8 16 DA 47 69 A2 10 EBMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72CIPHERTEXT: F0 DB A9 74 12 30 01 B0 1E 8F 72 19 CA 48 6D 27A2 9A 63 94 9B D9 1C 99Vetor #6: CWC-AES-256AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00PLAINTEXT: 00 01 02 03 04 05 06 07ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 7465 78 74 20 68 65 61 64 65 72 2E 00NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5HASH VALUE: 0A C6 B1 39 57 7F 26 DA 94 16 42 E1 6D 73 EC B5AES(HVAL): 4B A5 AD 1E 74 A2 C5 BE AB D0 DA 4D F4 29 83 0CMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B D9 AF 96 58 F6 87 D3 4FF1 73 C1 E3 79 C2 F1 ACVetor #7: CWC-AES-128AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FPLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E31

www.manaraa.com

ASSOC DATA: <None>NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8CHASH VALUE: 79 00 74 72 E1 C8 36 96 ED 7A B1 F9 03 6E 94 8BAES(HVAL): 2B 0F 24 69 B1 2B BE 39 C9 40 67 BA F1 25 E2 5BMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 31 E6 6E 57 0B 0F 77 8086 F9 80 75 7E 7F C7 77 3E 80 E2 73 F1 68 89Vetor #8: CWC-AES-192AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0EASSOC DATA: <None>NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5HASH VALUE: 2C 5E 3A A4 37 1C 27 D6 E8 6B 76 DC 3D 93 BC 87AES(HVAL): 48 6E 9C E5 C3 16 3E A6 9C D4 D7 E2 7C 9D 92 D2MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72CIPHERTEXT: F0 DB A9 74 12 30 01 B0 E1 42 B7 58 87 C9 00 8ED8 68 D6 3A 04 07 E9 F6 58 6E 31 8E E6 9E A0Vetor #9: CWC-AES-256AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0EASSOC DATA: <None>NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5HASH VALUE: 4A 70 29 CC 58 25 52 CB 75 AD C9 60 FF B3 F7 55AES(HVAL): 2B 64 0E 02 CE 51 DE 22 B2 0F 2A 8D C4 23 CD C0MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B 9B C6 2D DE 26 DD 47 B96E 35 44 4C 74 C8 D3 E8 AC 31 23 49 C8 BF 60Vetor #10: CWC-AES-128AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FPLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0EASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 7465 78 74 20 68 65 61 64 65 72 2E 00NONCE: FF EE DD CC BB AA 99 88 77 66 55--32

www.manaraa.com

HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8CHASH VALUE: 51 AE 9D 7E 86 BD E0 B2 AA 18 2C 91 87 0A 9C A5AES(HVAL): DF 48 30 BD 1D DC E0 59 B1 C2 0B 29 01 4F 80 10MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 31 E6 6E 57 0B 0F 77 74C1 ED 54 D9 89 21 A7 0F BC EC 71 83 9B 0A C2Vetor #11: CWC-AES-192AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0EASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 7465 78 74 20 68 65 61 64 65 72 2E 00NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5HASH VALUE: 51 60 E7 81 DC 64 F9 CD 54 BA 02 40 A2 E8 EE 99AES(HVAL): A0 30 58 13 22 B6 80 53 64 B0 3E 52 41 D2 2D 0AMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72CIPHERTEXT: F0 DB A9 74 12 30 01 B0 E1 42 B7 58 87 C9 00 6686 AC 20 DB A4 B9 1C 0E 3C 87 81 B3 A9 21 78Vetor #12: CWC-AES-256AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0EASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 7465 78 74 20 68 65 61 64 65 72 2E 00NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5HASH VALUE: 3F F5 0C 60 E6 01 7A 3C A1 BB B3 54 65 02 85 7CAES(HVAL): 3E EF A2 E4 97 91 82 86 73 0C F6 E9 46 2C CA 15MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B 9B C6 2D DE 26 DD 47 ACE5 99 A2 15 B4 94 77 29 AF ED 47 CB C7 B8 B5Vetor #13: CWC-AES-128AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FPLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8FASSOC DATA: <None>NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8C33

www.manaraa.com

HASH VALUE: 58 D5 28 89 4F 1F 6A 52 A6 44 FA 69 65 C0 73 A6AES(HVAL): A3 9E F3 6F 67 1F FA F8 71 0C 83 BB 49 A6 6E BCMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 31 E6 6E 57 0B 0F 77 0F48 5B 82 64 6E CF B9 F9 A0 B0 75 4F D5 94 36 5A08 17 2E 86 A3 4A 3B 06 CF 72 64 E3 CB 72 E4 6EVetor #14: CWC-AES-192AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8FASSOC DATA: <None>NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5HASH VALUE: 0D 0A D2 78 1E 8F E8 47 00 85 31 28 B1 E3 49 3AAES(HVAL): 5A 05 AA 45 88 06 A9 C1 DC 5A F6 AF 6F 8F EC F6MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72CIPHERTEXT: F0 DB A9 74 12 30 01 B0 E1 42 B7 58 87 C9 00 A3A4 C4 70 6D 40 41 F4 F9 58 E1 3F D0 D7 60 4D 1E9C B3 5E 76 71 14 90 8E B6 D6 4F 7C 9D F4 E0 84Vetor #15: CWC-AES-256AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8FASSOC DATA: <None>NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5HASH VALUE: 02 F2 DA E9 83 72 0E BC DC 77 89 3B 67 CB 3D B7AES(HVAL): B7 F6 AE DE A3 95 35 FE 03 93 08 DF E0 C7 F1 78MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B 9B C6 2D DE 26 DD 47 B5D2 41 06 CA 5D EB 80 A7 B5 71 0A 38 A4 39 8D BA25 FC 95 98 21 B0 23 0F 59 30 13 71 6D 2C 83 D8Vetor #16: CWC-AES-128AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FPLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8FASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 7465 78 74 20 68 65 61 64 65 72 2E 0034

www.manaraa.com

NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8CHASH VALUE: 05 EE B6 CB DF A6 E5 B8 4C 65 DD F4 8C C8 25 23AES(HVAL): 62 E5 23 FE 48 8F BC 14 E3 77 15 6C 4D 0F D0 8BMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 31 E6 6E 57 0B 0F 77 0F48 5B 82 64 6E CF B9 F9 A0 B0 75 4F D5 94 36 5AC9 6C FE 17 8C DA 7D EA 5D 09 F2 34 CF DB 5A 59Vetor #17: CWC-AES-192AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8FASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 7465 78 74 20 68 65 61 64 65 72 2E 00NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5HASH VALUE: 10 E1 48 E2 D0 68 39 EC C4 0A 6C A3 D6 8B 47 54AES(HVAL): 23 0A 37 C3 48 7C 9F 76 05 B9 5D 1A 21 D5 D5 FDMAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72CIPHERTEXT: F0 DB A9 74 12 30 01 B0 E1 42 B7 58 87 C9 00 A3A4 C4 70 6D 40 41 F4 F9 58 E1 3F D0 D7 60 4D 1EE5 BC C3 F0 B1 6E A6 39 6F 35 E4 C9 D3 AE D9 8FVetor #18: CWC-AES-256AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0FF0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8FASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 7465 78 74 20 68 65 61 64 65 72 2E 00NONCE: FF EE DD CC BB AA 99 88 77 66 55--HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5HASH VALUE: 09 4D C5 21 94 79 E0 58 4E E9 C1 2C 29 6A E3 A4AES(HVAL): E9 69 49 47 09 07 62 3B A9 8D AD 51 9F D5 D1 F7MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B 9B C6 2D DE 26 DD 47 B5D2 41 06 CA 5D EB 80 A7 B5 71 0A 38 A4 39 8D BA7B 63 72 01 8B 22 74 CA F3 2E B6 FF 12 3E A3 5735

